
z/OS IBM

DCE
Application Development Guide:
Introduction and Style

 SC24-5907-00

z/OS IBM

DCE
Application Development Guide:
Introduction and Style

 SC24-5907-00

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix D, “Notices”
on page 329.

First Edition (March 2001)

This edition, SC24-5907-00, applies to Version 1 Release 1 of z/OS DCE Base Services, z/OS DCE user Data Privacy (DES and
CDMF), z/OS DCE User Data Privacy (CDMF) (program number 5694-A01), and to all subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for reader's comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Information Development, Dept. G60
1701 North Street
Endicott, NY 13760-5553
United States of America

FAX (United States & Canada): 1+607+752-2327
FAX (Other Countries):

Your International Access Code +1+607+752-2327

IBMLink (United States customers only): GDLVME(PUBRCF)
Internet e-mail: pubrcf@vnet.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The following statements are provided by the Open Software Foundation.

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Copyright 1993, 1994 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

� Copyright 1990, 1991 Digital Equipment Corporation
� Copyright 1990, 1991 Hewlett-Packard Company
� Copyright 1989, 1990, 1991 Transarc Corporation
� Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG
� Copyright 1990, 1991 International Business Machines Corporation
� Copyright 1988, 1989 Massachusetts Institute of Technology
� Copyright 1988, 1989 The Regents of the University of California

All Rights Reserved.

Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE
TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS and Transarc are registered trademarks of the Transarc Corporation.

Episode is a trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

X/Open is a trademark of The Open Group in the U.K. and other countries.

PostScript is a trademark of Adobe Systems Incorporated.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software,
the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS
Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in
paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is
submitted with "restricted rights." Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP
18-52.227-79 (April 1985) "Commercial Computer Software-Restricted Rights (April 1985)." If the contract contains the Clause at
18-52.227-74 "Rights in Data General" then the "Alternate III" clause applies.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished—All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

 iii

iv DCE Application Development Guide: Introduction and Style

 Contents

About This Book . xvii
Who Should Use This Book . xvii

DCE Application Development Environment . xvii
Unsupported OSF DCE Functions . xviii

How This Book Is Organized . xix
Terminology Used in This Book . xx
Conventions Used in This Book . xxi
Where to Find More Information . xxii

Softcopy Publications . xxii
Internet Sources . xxii
Using LookAt to Look up Message Explanations . xxiii
Accessing Licensed Books on the Web . xxiii

Chapter 1. Introduction to DCE Application Programming . 1
About DCE Programming Style . 1

Mechanism, Policy, and Style . 1
Policy and Style Issues . 2
General Policies . 3

Application Development Overview . 4
Overview of DCE Application Development Steps . 5
Application Development Tools . 7

DCE UUID Generator . 7
DCE Interface Definition Language . 8
DCE IDL Compiler . 8
Attribute Configuration File . 9
DCE Host Daemon . 9
DCE Control Program . 10
DCE API . 10

The Interface Definition . 11
Generate the Interface UUID . 11
Write the Interface Definition File . 11
Write the Attribute Configuration File (ACF) . 12
Process the Files with the IDL Compiler . 13

The Server Initialization . 13
Set Up the Server's Objects . 14
Set Up Security . 17
Define Manager Entry Point Vectors for Each Set of Operations . 17
Register the Server . 18
Specify Multithreadedness . 20
Listen for Incoming Service Requests . 21
Clean Up Code When the Server Terminates . 21

The Client Binding and RPC Invocation . 22
Import the Binding Information from the Namespace . 22
Annotate the Binding Handle for Security . 23
Invoke Remote Procedure Calls . 25

The Server's Manager of RPC Requests . 26
Get the Client's Credentials . 26
Get RACF Authorization using RACF-DCE Interoperability . 27
Get the Object's Access Control List (ACL) . 27
Make the Authorization Decision . 27

 Copyright IBM Corp. 1994, 2001 v

Service the RPC Request . 28
Return the Results and Resume Listening . 28

Writing a Simple Distributed Application on z/OS . 29
High-Level Application Development Steps . 29
Step 1. Creating Files for Your Application . 30
Step 2. Generating a UUID and IDL File . 34
Step 3. Naming the Interface for Your Application. 37
Step 4. Defining the Interface Operations . 37
Step 5. Compiling the Interface with the IDL Compiler . 37
Step 6. Writing Your Server and Manager Code . 39
Step 7. Writing the Client Code for Your Application . 40
Step 8. Compiling the Client and Server Programs . 40
Step 9. Link-Editing Your Application . 45
Step 10. Building Your DCE Application . 48
Running Your DCE Application . 50
Step 1. Starting Your Server . 50
Step 2. Starting Your Client . 51
Step 3. Checking Your Application . 52
Step 4. Stopping Your Application . 52
Step 5. Setting Environment Variables . 53
Language Environment Runtime Options Considerations . 57
Note on Interlanguage Calls . 58

Creating a Sample Application: GREET . 58
Fast Path to Running Greet . 58
1. Creating Files for the Greet Application . 59
2. Generating a UUID and an IDL File . 59
3. Naming the Greet Interface . 60
4. Defining the Interface Operations . 61
5. Compiling the Greet Interface with the IDL Compiler . 61
6. Writing the Greet Server and Manager Code . 63
7. Writing the Greet Client Code . 66
8. Building the Greet Client and Server Programs . 69
9. Starting the Greet Server . 72
10. Starting the Greet Client . 73

Chapter 2. Extending the Greet Application . 75
Logging Into DCE . 75

Changing Your Login Context . 76
Inheriting Contexts for Multiple Programs . 78

Searching for Your Server . 78
Using the DCE Host Daemon . 79
Using the Name Service Interface . 86
Importing the Greet2 Server Binding from the Namespace . 91
Starting the Greet2 Server and Client . 94
Monitoring Your Distributed Application . 96

Using Automatic Binding Handles . 97
Modifying the Greet Code . 98

Adding Multiple Object Types . 100
Modifying the Greet IDL File . 102
Modifying the Greet4 Manager . 103
Modifying the Greet4 Server . 104
Modifying the Greet4 Client . 110
Starting the Greet4 Server and Client . 114

vi DCE Application Development Guide: Introduction and Style

Chapter 3. Securing the Greet Application . 117
Greet with Name-Based Authorization . 117

Finding the Source Code for this Example . 117
Greet Server (Main) . 118
Greet Server (Manager) . 123
Greet Client . 125
Creating a Key Table File for the Greet5 Server . 128
Starting the Greet5 Application . 129
Greet5 Server Output . 130
Greet5 Client Output . 131

Greet with EPAC-based Authorization . 131
Finding the Source Code for this Example . 134
Building the Greet6 Example . 136
Starting the Greet6 Server . 141
Updating the ACL Database File . 142
Starting the Greet6 Client . 144

Chapter 4. Threads . 149
Thread Use Policy . 150

To Thread or Not to Thread . 150
How Many Threads? . 151
Scheduling Policies . 151

Thread Safety . 152
Thread Rules . 152

Threads Programming Topics . 153
Thread Handles . 154
Storage for Thread Specific Data . 154
Canceling Threads . 155
Signals . 159
Forking in a Threaded Application . 161

RPC Threads . 162
RPC Cancel Semantics . 162

Chapter 5. Security . 163
The Basic Security Model . 163
Application Roles . 165

Authentication Model . 165
The DCE Authentication Model . 165
Application-Level Authentication . 166
Obtaining an Authentication Identity . 168
The Authenticated RPC Call . 169
Managing Keys . 169
Default Server Authentication Steps . 170
Default Client Authentication Steps . 174

Authorization . 176
Authorization using RACF-DCE Interoperability . 177
Client Credentials . 179
Access Control Lists . 180
ACL Managers . 182

Chapter 6. Binding . 203
The Binding Model . 203

Server Binding Model . 204
Client Binding Model . 205

 Contents vii

Call Routing . 206
Routing Policy . 208

Binding Handles . 209
Binding Methods . 209

Authentication and Binding Methods . 213

Chapter 7. Using the DCE Name Service . 215
Introduction to Using NSI . 215

The UUID . 216
Object UUIDs . 216
Interface UUIDs . 216
Summary: Names and UUIDs . 216

Binding to an Object . 217
Junctions . 217

A Junction Example . 218
Junctions and the ACL Editor . 219

Name Service Terminology . 219
CDS Entries . 219
CDS Entry Attributes . 220

Binding . 221
Importing and Exporting Bindings . 221
Summary . 222

Partial Binding and the Endpoint Mapper . 223
Interface Ambiguity and Partial Bindings . 224
Using Object UUIDs to Avoid Binding Ambiguity . 225
An Object-Oriented Namespace . 226
Setting Up an Object-Oriented Namespace . 227
Groups and Profiles . 229

Group Entries . 230
Profiles . 230
Summary of Namespace Entry Types . 231

Three Models for Accessing Binding Information . 231
Access by Services . 231
Access By Servers . 232
Access By Objects . 232
Summary of Binding Models . 232

Models Based on Non-CDS Databases . 233
Example of a Privately Managed Database . 233
Combining Models . 234

An Object-Oriented Model with Grouped Binding Information . 234
Server and Client Steps . 235

Server Export . 235
Client Import . 237

Global Organization of the Namespace . 238

Chapter 8. RPC Parameters . 241
Execution Semantics . 241
Parameter Semantics . 242

Parameter Memory Management . 243
RPC Data Types . 244

IDL to C Type Mappings . 245
Character Data Handling . 248
Pointers . 248
Context Handles . 255

viii DCE Application Development Guide: Introduction and Style

Arrays . 255
Structures and Unions . 259
Pipes . 261
The transmit_as Attribute . 262

Chapter 9. Server Management . 267
Application Support for Server Management . 268
Manager Initialization . 268

Appendix A. A Sample Application . 271
Getting Started . 271
The Generic Server . 271
Manager and Client . 272
Object Bind Interface . 272

Appendix B. Another Sample DCE Application: TIMOP . 273
Developing a DCE Application . 273

What Do Stub Files Do? . 276
TIMOP — A Complete Sample Application . 276

What TIMOP Does . 276
TIMOP and Security . 277
Source Files . 277
Building TIMOP . 278
Installing TIMOP . 279
Running TIMOP . 280
Stopping TIMOP . 282
Further Exercises . 282
The TIMOP Program: A Sample DCE Application . 284

Appendix C. Greet6 ACL Manager Example . 303
Greet6 Server Code . 303
Greet6 Manager Code . 308
Greet6 secacl Code . 310
Greet6 rdacl Code . 319
Greet6 Client Code . 325

Appendix D. Notices . 329
Trademarks . 330
Programming Interface Information . 331

Glossary . 333

Bibliography . 353
z/OS DCE Publications . 353
z/OS SecureWay Security Server Publications . 353
Tool Control Language Publication . 354
IBM C/C++ Language Publication . 354
z/OS DCE Application Support Publications . 354
Encina Publications . 355

Index . 357

 Contents ix

x DCE Application Development Guide: Introduction and Style

 Figures

1. The Combined Effect of IDL and the RPC Runtime . 5
2. IDLALLOC Utility Menu . 34
3. Example of an IDL Template . 34
4. Sample Shell Command to Run the UUID Generator . 35
5. Sample Shell Command to Create a UUID for STOCK Application 35
6. Sample Shell Command to Create UUID Using a PDS . 35
7. Sample TSO/E Command to Create a UUID for STOCK Application 35
8. Sample TSO/E Command to Create a UUID using an HFS File 36
9. Sample JCL to Run the UUID Generator . 36

10. Sample JCL to Create a UUID for STOCK Application . 36
11. Sample JCL to Create UUID Using an HFS file . 36
12. Sample Shell Command to Run the IDL Compiler . 38
13. Sample Shell Command to Run the IDL Compiler — HFS File . 38
14. Sample Shell Command to Run the IDL Compiler — PDS File . 38
15. Sample TSO/E Command to Run the IDL Compiler . 39
16. Sample JCL to Run the IDL Compiler in Batch . 39
17. Compiling Your Client using HFS Files . 41
18. Compiling Your Server using HFS Files . 41
19. Compiling Your Client using PDS Files . 42
20. Compiling Your Server using PDS Files . 42
21. Compiling in the TSO/E environment . 42
22. Sample JCL to Compile Your DCE Application . 44
23. Sample Shell Command to Link Your Client using HFS Files . 45
24. Sample Shell Command to Link Your Server using HFS Files . 46
25. Sample Shell Command to Link Your Client using PDS . 46
26. Sample Shell Command to Link Your Server using PDS . 46
27. Sample TSO/E Command to Link Your Client . 46
28. Sample JCL to Link Your DCE Client . 47
29. Sample JCL to Link Your DCE Server . 48
30. Sample Makefile to Build Your DCE Application . 49
31. Example Command for Running Your DCE Server in Background Mode 50
32. Example JCL for Running Your DCE Server . 51
33. Example Command for Running Your DCE Client . 51
34. Example JCL for Running Your Client . 51
35. Example Environment Variables . 56
36. Specifying Environment Variables in Batch . 56
37. Shell Command to run the UUID Generator for Greet . 59
38. Generating a UUID for the Greet Application in Batch . 60
39. Example of the Greet Application IDL File . 60
40. Naming the Greet Interface . 60
41. The Greet Application Interface Operations . 61
42. Sample Command to Invoke the IDL Compiler in the Shell . 62
43. Sample TSO/E Command to Run the IDL Compiler . 62
44. Sample JCL to Run the IDL Compiler . 62
45. The Greet Application Header File . 63
46. Greet Manager Source Code . 64
47. Greet Server Source Code . 65
48. Greet Client Source Code . 68
49. Makefile to Build the Greet Application . 69
50. Sample JCL to Compile Greet . 70

 Copyright IBM Corp. 1994, 2001 xi

51. Sample JCL to Link the Greet Server Code . 71
52. Example JCL to Link the Greet Client Code . 72
53. Running the Greet Server in Background Mode . 72
54. Greet Server Output in Listening Mode . 72
55. Example JCL for Running the Greet Server . 73
56. Initial Output of Greet Server . 73
57. Example Command for Running the Greet Client in the Shell . 74
58. Sample JCL for Running the Greet Client . 74
59. Greet Client Output . 74
60. Final Output for the Greet Server . 74
61. Logging into DCE in Batch . 75
62. Changing Your Login Context for Batch Applications . 77
63. Starting Multiple DCE Applications in Batch . 78
64. Sample Code to Register the Greet1 Server Endpoint to the DCE Host Daemon 80
65. Greet1 Client Code . 83
66. Starting the Greet1 Server in Batch Using the DCE Host Daemon 84
67. Initial Greet1 Server Output . 84
68. Greet1 Client Start up JCL . 85
69. Greet1 Client Output . 85
70. Final Greet1 Server Output . 86
71. Greet2 Server Source Code — Modified for CDS. 88
72. Greet2 Client Source Code - Modified for CDS . 92
73. Starting the Greet2 Server in Batch Using CDS . 94
74. Greet2 Server Output . 95
75. Starting the Greet2 Client in Batch for CDS . 95
76. Greet2 Client Output . 95
77. Greet2 Server Output . 95
78. Network Monitor Output - Dynamic Update . 96
79. Network Monitor Output — Client and Server Communication . 97
80. ACF File for the Greet3 Application — auto_handle . 98
81. IDL File for the Greet3 Application — Using Automatic Binding . 98
82. Manager Code for the Greet3 Application — Using Automatic Binding 99
83. Client Code for Greet3 Application — Using Automatic Binding . 99
84. Greet3 Client Start up JCL . 100
85. Greet4 IDL File — for Multiple Object Types . 102
86. Greet4 Manager — for Multiple Object Types . 103
87. Greet4 Server Code — Modified for Multiple Object Types . 105
88. Greet4 Client Code — Modified for Multiple Object Types . 111
89. Starting the Greet4 Client with Multiple Object Types . 114
90. Greet4 Client Output — for Multiple Object Types . 115
91. Greet5 Server Code Modified for Name-Based Security . 119
92. Greet5 Manager Code Modified for Name-Based Security . 124
93. Greet5 Client Code Modified for Name-Based Security . 126
94. Starting the Greet5 Server in Batch . 129
95. Starting the Greet5 Client in Batch . 130
96. Greet5 Server Output — If Client Is Accepted . 130
97. Greet5 Server Output — If Client Rejected . 130
98. Greet5 Server Output — When Server Is Stopped . 130
99. Greet5 Client Output — On Successful Remote Call . 131
100. Greet5 Client Output — On Unsuccessful Remote Call . 131
101. Traditional Greet Application without Security . 132
102. Greet6 Application with ACL Manager . 133
103. Greet5 Example — Name-Based Authorization . 135
104. Greet6 Example — EPAC Based Authorization . 136

xii DCE Application Development Guide: Introduction and Style

105. Sample Makefile to Build the Greet6 Application . 137
106. Sample JCL to Compile the Greet6 ACL Manager Application 138
107. Sample JCL to Link-Edit the Greet6 Client . 140
108. Sample JCL to Link-Edit the Greet6 Server . 140
109. Sample JCL to Start the Greet6 Server . 141
110. Greet6 Server Initialization Output . 141
111. Greet6 ACL Database file (After initialization) . 142
112. Greet6 ACL Manager Permissions . 143
113. Greet6 Server Output — After ACLs Are Updated . 144
114. Starting the Greet6 Client . 144
115. Greet6 Server Output on a Successful RPC . 145
116. Greet6 Server Output on an Unsuccessful RPC . 146
117. Greet6 Client Output on Authenticated RPC . 146
118. Greet6 ACL Database File (After Updates) . 146
119. Information Required to Complete an RPC . 204
120. Server Binding Relationships 1 . 206
121. Server Binding Relationships 2 . 207
122. Methods of Binding Management . 211
123. How a Name Turns into an Object . 217
124. A Namespace Junction . 218
125. Client and Server Use of the Name Service . 222
126. The Endpoint Mapper Service Completes a Binding . 223
127. Print Server Entries in Namespace . 224
128. Print Server Name Entries with Object UUIDs . 225
129. Separate Printer Name Entries . 226
130. Object-Oriented Namespace Organization . 229
131. The Export Operation in a Model with Grouped Bindings . 236
132. Importing from a Model That Uses Grouped Bindings . 238
133. Managing a Server with a Control Client . 267
134. How A DCE Application Is Produced . 274
135. Sample makefile for Building timop . 279
136. Example JCL to Start the TIMOP Server . 282
137. Example JCL to Start the TIMOP Client . 282
138. Interface Definition File for TIMOP . 284
139. Attribute Configuration File for TIMOP . 285
140. Auxiliary information for TIMOP . 285
141. Client Header File for TIMOP . 286
142. Client Program for TIMOP Interface . 287
143. Server Program for TIMOP Interface . 296
144. Manager Routines for TIMOP Interface . 299
145. Reference Monitor for TIMOP Example . 301

 Figures xiii

xiv DCE Application Development Guide: Introduction and Style

 Tables

1. User-Written Files for DCE Applications . 30
2. System-generated Files for DCE Applications . 31
3. Recommended DCE Application Data Set Attributes . 33
4. IDL Compiler Output . 37
5. Cancelability State . 156
6. Authentication . 164
7. Binding Semantics (Client Operation) . 213
8. Examples of Objects (Server Resources) . 227
9. RPC API Parameter Semantics . 242

10. IDL/NDR/C Type Mappings . 245
11. Timop Server Source Files . 275
12. Timop Client Source Files . 275
13. The Timop Source Files (HFS and PDS Names) . 277

 Copyright IBM Corp. 1994, 2001 xv

xvi DCE Application Development Guide: Introduction and Style

About This Book

The objective of this book is to assist you in designing, writing, compiling, linking, and running distributed
applications on the IBM z/OS operating system. Specifically, use this book for creating applications with
z/OS DCE running on the stand-alone z/OS system. The steps to develop a distributed application using
DCE services and application programming interfaces (API) are described in progressive detail. Also
discussed are the development decisions and tools that you need to consider when developing your
distributed application using z/OS DCE.

To create DCE applications that access IMS or CICS transactions, refer to z/OS DCE Application
Support Programming Guide.

Who Should Use This Book

This book assumes you are an experienced application developer or programmer with a working
knowledge of the C programming language and the z/OS operating system. You do not have to possess
prior knowledge of, or experience with, designing and writing distributed applications using the Open
Software Foundation (OSF) Distributed Computing Environment (DCE) services and APIs.

Ideally, you should be able to:

� Allocate z/OS data sets
� Edit, browse, and copy z/OS data sets and associated members
� Print data sets
� Write and submit batch jobs on z/OS
� Write, compile, link, and run C/C++ programs on z/OS
� Write and understand JCL to run on z/OS
� Understand Shell and TSO/E commands.

A good working knowledge and understanding of the following would be helpful:

� Interactive System Productivity Facility/Program Development Facility (ISPF/PDF)
� Concepts behind a distributed application
� Using the Spool Display and Search Facility (SDSF) to check on the status of your application.

Some exposure to the UNIX or AIX operating system is helpful but not essential to use this book.

You should be familiar with the concepts of the Distributed Computing Environment. If you are not, read
z/OS DCE Introduction.

DCE Application Development Environment

It is conceivable that you may develop your DCE applications on a platform other than the z/OS operating
system. Perhaps you may prefer to work on a UNIX-based workstation or a proprietary operating system.
If your goal is to ultimately run either the client or server portion of your DCE application on z/OS, ensure
that portion of your DCE application conforms to all recommendations contained in this book.

This book describes the development steps assuming you are developing your DCE applications on the
z/OS operating system. If you are developing DCE applications on the z/OS platform that are targeted to
run on another platform, consult the DCE application development documentation associated with that
platform.

 Copyright IBM Corp. 1994, 2001 xvii

Unsupported OSF DCE Functions

The following DCE technology functions, which may be available in the Distributed Computing
Environment product from OSF or on DCE offerings from other vendors, are not supported in z/OS DCE:

� DCE Directory Services

– X/Open Data Services (XDS) function (Global Directory Service (GDS) portion)
– X/Open OSI-Abstract-Data Manipulation (XOM) function (GDS portion)

 – Global Directory

On z/OS, only CDS, XDS, and XOM access to CDS are supported. GDS, XDS, and XOM access to GDS
are not supported.

The following DCE daemon is not supported on z/OS DCE:

� DCE Security daemon

Note: Although the DCE Security daemon is not included in z/OS DCE, a security server is available
from IBM as a separately licensed product.

OSF DCE Programming Interfaces: The following programming interfaces are not supported:

 � pthread interfaces

– The following interfaces are not supported by z/OS DCE and return -1, errno ENOSYS:

 - pthread_attr_getinheritsched()
 - pthread_attr_getprio()
 - pthread_attr_getsched()
 - pthread_attr_setinheritsched()
 - pthread_attr_setprio()
 - pthread_attr_setsched()
 - pthread_getprio()
 - pthread_getscheduler()
 - pthread_setprio()
 - pthread_setscheduler()

– For all pthread interfaces (including mutexes, threads, condition variables and so on), the
interfaces do not accept copies of the objects as a parameter. The object returned from the
pthread interface to create the object must be used at all times.

– Unlike the OSF DCE implementation, the z/OS DCE implementation of the following functions can
raise an exception (exc_e_cpa_error) in error situations:

 - pthread_lock_global_np()
 - pthread_unlock_global_np()

– pthread_cond_timedwait() expects an absolute hardware time (that is, time-of-day clock value) for
the wait time instead of the DCE software clock time, which is what OSF/DCE expects.
pthread_get_expiration_np() returns a software adjusted time as in the OSF/DCE model, and is
used as input to pthread_cond_timedwait().

– exc_report() does not print out a message to stderr as expected. z/OS DCE uses Reliability,
Availability and Serviceability (RAS) services to log messages instead of this function.

 � Exceptions

– z/OS DCE catches z/OS abends in addition to the set of predefined exceptions and user defined
exceptions.

xviii DCE Application Development Guide: Introduction and Style

– TRY/CATCH/ENDTRY macros can raise an exc_e_insfmem exception if they cannot get enough
heap storage.

– TRY/CATCH/ENDTRY macros can raise an exc_e_uninitexc exception if they detect that the
CATCH does not specify a valid exception.

� Remote Procedure Call

 – rpc_cs_binding_set_tags()
 – rpc_cs_char_set_compat_check()
 – rpc_cs_eval_with_universal()
 – rpc_cs_eval_without_universal()
 – rpc_cs_get_tags()
 – rpc_mgmt_set_server_stack_size()
 – rpc_ns_import_ctx_add_eval()
 – rpc_ns_mgmt_free_attr_data()
 – rpc_ns_mgmt_free_codesets()
 – rpc_ns_mgmt_read_attr_begin()
 – rpc_ns_mgmt_read_attr_done()
 – rpc_ns_mgmt_read_attr_next()
 – rpc_ns_mgmt_remove_attribute()
 – rpc_ns_mgmt_read_codesets()
 – rpc_ns_mgmt_set_attribute()
 – rpc_rgy_get_codesets()
 – rpc_rgy_get_max_bytes()

 � Security Services

 – sec_login_get_pwent()
 – sec_login_init_first()

How This Book Is Organized

This guide is divided into nine chapters and three appendixes containing program samples. The first part,
designed for novice DCE application programmers, introduces DCE application programming with z/OS
DCE. The following parts contain detailed information on using the various DCE components and their
respective APIs that are supported by z/OS DCE.

� Chapter 1, “Introduction to DCE Application Programming” on page 1 introduces DCE and its various
components as they relate to application programming. It shows you the steps to create a distributed
application using z/OS DCE with several example applications as templates for development. This
puts you on a fast path to developing DCE applications on the z/OS operating system.

� Chapter 2, “Extending the Greet Application” on page 75 and Chapter 3, “Securing the Greet
Application” on page 117 expand on the example application showing you how to exploit DCE
services such as security and automatic binding.

� Chapter 4, “Threads” on page 149 introduces the use of DCE Threads in your distributed applications.
Discussed are how and when to use threads, including thread rules, safety, and related programming
topics such as storage use with threads. The interaction of RPC with threads is also explained.

� Chapter 5, “Security” on page 163 introduces the basic DCE security model, including the two main
security services: authentication and authorization. The roles of application programs are
emphasized, with examples of routines used by both clients and servers to set up and implement
security functions such as acquiring and validating credentials and performing password management.

� Chapter 6, “Binding” on page 203 describes the process by which clients establish relationships with
servers in DCE applications. The binding model, call routing, binding handles, methods and
management are covered.

 About This Book xix

� Chapter 7, “Using the DCE Name Service” on page 215 introduces the DCE Name Service. The
naming, organization and retrieval of object and binding information is covered, including the use of
the DCE Cell Directory Service (CDS) as the primary name database. The interaction of the name
service with various binding methods and the necessary routines used by application programs are
outlined.

� Chapter 8, “RPC Parameters” on page 241 explains the DCE RPC mechanism and how its data
model differs from that of a local call model, particularly focusing on RPC parameter syntax. It
contains style and policy recommendations for data passing, with numerous examples.

� Chapter 9, “Server Management” on page 267 briefly outlines basic DCE server management
operations and how they are supported by an application.

� Appendix A, “A Sample Application” on page 271 is a discussion of an example DCE application,
with both server and client portions, that illustrates the development steps and programming policies in
the foregoing chapters.

� Appendix B, “Another Sample DCE Application: TIMOP” on page 273 is another example of a
simple but complete DCE application program.

� Appendix C, “Greet6 ACL Manager Example” on page 303 is an example of using a simple ACL
manager, one of the basic security features discussed in Chapter 5, “Security” on page 163.

To find more information on topics related to application development not addressed in this book, consult
the following:

� z/OS DCE Application Development Reference, SC24-5908

� z/OS DCE Administration Guide, SC24-5904

� z/OS DCE Command Reference, SC24-5909

� z/OS DCE Application Support Programming Guide, SC24-5902 (CICS and IMS)

� z/OS DCE Messages and Codes, SC24-5912

For example, the DCE CDS is discussed in detail as a separate component in the administration
documentation. Similarly, certain aspects of the DCE Security Service important to application developers
(such as adding new principals to the registry database) are found only in the administration books.

Terminology Used in This Book

Because DCE technology has been developed from the UNIX environment, many DCE concepts and
terms contained herein relate to that environment. z/OS terms and concepts are used throughout this
book wherever possible.

The following table explains how certain terms are used in this book and how they are related.

Related Terms Relationship

file

data set

sequential data set

partitioned data set member

hierarchical file system (HFS) file

Throughout this book, the term file can refer to a sequential data
set, a member of a partitioned data set, or a hierarchical file
system (HFS) file. For more information on hierarchical file
systems in z/OS, see z/OS UNIX System Services User's Guide,
SA22-7801.

xx DCE Application Development Guide: Introduction and Style

Conventions Used in This Book

This book uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must enter into
the system literally, such as commands, options, or path names.

Italic Italic words or characters represent values for variables.

Example font Examples and information displayed by the system appear in constant width
type style.

Related Terms Relationship

user prefix

data set names

The term user prefix is used throughout this book when referring
to the names of data sets in a TSO/E environment. In that
environment, the user prefix is usually a user’s logon
identification. If desired, you can set the user prefix to a value
other than the your logon identification by using the TSO/E
PROFILE command. In z/OS batch mode, your user prefix
depends on whether Resource Access Control Facility (RACF),
a component of the SecureWay Security Server for z/OS, or
another security product is installed on your system. If RACF is
installed and you are processing in batch mode, your user prefix
can be the same as your logon user identification. If RACF is
not installed and you are processing in batch mode under z/OS,
you may not have to use a prefix. See your systems
programmer to determine the RACF settings for your site.

Unless otherwise specified, when the full name of a data set is
referred to, the high-level qualifier for that data set will be
represented by USERPRFX. The USERPRFX is determined by
the application developer, and depends on the library where the
application is installed. For example, USERPRFX.C(MEMBER)
represents a partitioned data set whose first-level qualifier is
represented by USERPRFX and whose second-level qualifier is C.
Its member is MEMBER.

application programming interface (API)

call

function

routine

Throughout this book, the terms API, call, function, and routine
all refer to the same z/OS DCE application programming
interface. For example, rpc_binding_free() API,
rpc_binding_free() call, and rpc_binding_free() routine, all
refer to the same rpc_binding_free() function.

DCE components Throughout this book, all references to individual DCE
components (such as RPC) refer to that component with z/OS
DCE. For example, references to RPC, DCE RPC, and z/OS
DCE RPC all refer to the same z/OS DCE component.

z/OS SecureWay Security Server DCE In this book the term “DCE Security Server” (or simply “Security
Server”) refers to the z/OS SecureWay Security Server DCE or
to a DCE Security Server provided on another host in the DCE
cell. The z/OS SecureWay Security Server DCE is a component
of the SecureWay Security Server for z/OS.

daemon

process

started task

address space

The term daemon (originating from the UNIX operating system)
is used throughout this book. It is synonymous with a process.
Usually there is one process per address space, however the
DCEKERN started task is an exception as its address space
contains four processes (or daemons).

 About This Book xxi

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item one
or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last non-blank
character on the line to be continued, and continue the command on the next
line.

This book uses the following keying conventions:

<Alt-c> The notation <Alt-c> followed by the name of a key indicates a control character
sequence.

<Return> The notation <Return> refers to the key on your keyboard that is labeled with the
word Return or Enter, or with a left arrow.

Entering commands When instructed to enter a command, type the command name and then press
<Return>.

Where to Find More Information

Where necessary, this book references information in other books using shortened versions of the book
title. For complete titles and order numbers of the books for all products that are part of z/OS, see the
z/OS Information Roadmap, SA22-7500. For complete titles and order numbers of the books for z/OS
DCE, refer to the publications listed in the “Bibliography” on page 353.

For information about installing z/OS DCE components, see the z/OS Program Directory.

 Softcopy Publications

The z/OS DCE library is available on a CD-ROM, z/OS Collection, SK3T-4269. The CD-ROM online
library collection is a set of unlicensed books for z/OS and related products that includes the IBM Library
Reader. This is a program that enables you to view the BookManager files. This CD-ROM also
contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe
Acrobat reader.

 Internet Sources

The Softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using
the following URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You can also provide comments about this book and any other z/OS documentation by visiting that URL.
Your feedback is important in helping to provide the most accurate and high-quality information.

xxii DCE Application Development Guide: Introduction and Style

Using LookAt to Look up Message Explanations

LookAt is an online facility that allows you to look up explanations for z/OS messages. You can also use
LookAt to look up explanations of system abends.

Using LookAt to find information is faster than a conventional search because LookAt goes directly to the
explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system. You can obtain the
LookAt code for TSO from the LookAt Web site by clicking on the News and Help link or from the z/OS
Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat message-id as in the
following:

lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message ID and select the
release with which you are working.

Note: Some messages have information in more than one book. For example, IEC192I has routing and
descriptor codes listed in z/OS MVS Routing and Descriptor Codes, SA22-7624. For such
messages, LookAt prompts you to choose which book to open.

Accessing Licensed Books on the Web

z/OS licensed documentation in PDF format is available on the Internet at the IBM Resource Link site:

http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to these books requires an
IBM Resource Link user ID, password, and z/OS licensed book key code. The z/OS order that you
received provides a memo that includes your key code.

To obtain your IBM Resource Link user ID and password, logon to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.
3. Select Access Profile.
4. Select Request Access to Licensed books.
5. Supply your key code where requested and select the Submit button.

If you supplied the correct key code you will receive confirmation that your request is being processed.

After your request is processed you will receive an e-mail confirmation.

 About This Book xxiii

Note: You cannot access the z/OS licensed books unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

To access the licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
 2. Select Library.
 3. Select zSeries.
 4. Select Software.
 5. Select z/OS.

6. Access the licensed book by selecting the appropriate element.

xxiv DCE Application Development Guide: Introduction and Style

Chapter 1. Introduction to DCE Application Programming

The first part of this chapter addresses some programming style issues of particular importance to DCE
application developers, while the rest introduces the basic steps involved in writing a DCE application.

About DCE Programming Style

The Style Guide part of this book attempts to bridge a gap. On one side stands the reference material
provided by the rest of the DCE Application Development Guide material and by the z/OS DCE Application
Development Reference. In theory, this material provides complete documentation of the mechanisms of
DCE application programming. In particular, it documents the syntax and semantics of every DCE API
interface and IDL construct and provides a service-by-service guide to their use.

On the other side stands the formal application portability specification provided by the OSF Application
Environment Specification/Distributed Computing AES/DC. This provides a policy guide of a specific kind:
if applications wish to be portable among DCE implementations, they need to follow the OSF AES
guidelines.

Between these two poles of documentation, there is still a great deal of room to maneuver. The DCE
application programming facilities provide such a large number of mechanisms, so many possible ways of
doing things, that it is often difficult for the programmer to decide among them. The guidelines provided
by the AES/DC are limited to only one (albeit an important one) policy issue: portability. The DCE
programmer is still left with many decisions about issues that do not arise in the typical local programming
environment: how to use the name services, which security services to employ, how many threads to use,
and so on.

The Style Guide attempts to answer many of these questions or at least to provide the grounds upon
which an application programmer can base decisions. Of course, the coverage in these relatively few
pages is not exhaustive. The number of implementation issues raised by the available DCE application
programming mechanisms is potentially unlimited. The Style Guide attempts to cover the major issues
that are likely to confront most programmers at some stage in DCE application design and development.

Aside from attempting to anticipate your questions, the Style Guide may also raise issues that you may
not even have considered. DCE covers a great deal of ground that is probably unfamiliar to most
application developers, such as multithreading and distributed security. When moving in such unfamiliar
territory, it is easy to overlook potential problems. The Style Guide attempts to alert you to major
stumbling blocks in each area.

Mechanism, Policy, and Style

The Style Guide is based on what is, to some degree, a fiction: that application development issues can
be nicely divided between mechanism on one hand and policy and style on the other. In theory, the
mechanisms of DCE programming refer to the syntax and semantics required by APIs, IDL constructs,
services, and the like. These are the things about which the programmer has no choice: they must either
be done according to the documentation or not done at all. Policy and style, on the other hand, are
supposed to refer to the things about which the programmer can make a choice: specifically, which
mechanisms to use in given circumstances.

In practice, the distinction between mechanism and policy/style is often vague. The other parts of the
z/OS DCE application development documentation set contain much that could be considered policy and
style guidance. And, for reasons discussed in some detail in the next section, the Style Guide often
contains descriptions of the mechanisms of DCE programming.

 Copyright IBM Corp. 1994, 2001 1

Nevertheless, the Style Guide does attempt to keep to the ground of policy and style issues. It assumes
that you already know what mechanisms are available and attempts to provide guidance about the choices
you have in using those mechanisms. One result is that the Style Guide is not a tutorial; it often assumes
knowledge of terms and concepts that are explained elsewhere in the programmer's documentation. On
the other hand, the Style Guide does in many cases provide high-level discussions of the organization and
principals of DCE services, such as the security services. The assumption is that you may already know
many of the details but may lack an overall framework. Often, such a general model is just what you need
to be able to make rational policy decisions.

The distinction between policy and style is itself somewhat vague. In general, policy refers to the things
you should do in an application program. You can usually identify a policy recommendation because the
word “should,” “must” or “recommended” appears in a sentence. Style is a more general term that
includes policy (hence the title “Style Guide”), but that also covers a variety of other suggestions about
how you might do things. Much of the sample code included in the Style Guide embodies not only the
recommended policies, but also provides illustrations of possible styles of usage. Such suggestions are
intended to be helpful, but unless they are couched in the language of policy, should be considered
entirely optional.

Policy and Style Issues

Remote application programming, using DCE, imposes some special requirements on applications that are
not relevant to most local applications. A DCE application is a multi-component system in which the
various components interact dynamically as the program operates. Obviously, the application developer is
concerned with creating two major types of components, servers and clients, but these application specific
components also enter into relationships with other DCE components. For example, most applications will
be clients of naming and security services. Server applications that provide ACL managers may act, in
turn, as servers to dcecp ACL commands. Many similar client/server relationships may be created during
the operation of a distributed application.

Furthermore, even components that do not communicate directly share common resources, such as
directory and security services. Components use these services to exchange specific kinds of data, such
as bindings, and such exchanges can succeed only when they are made according to the correct
protocols. For example, a server needs to organize the way it exports bindings to a name service so that
clients can succeed in finding them. Similarly, clients and servers can only succeed at authenticated
communications if the correct registry and ACL data has been created and if each follows the correct
incantations to make use of this data.

A particular constraint on DCE applications is that they must take into account the administrative overhead
of a distributed system. Servers need to consider such issues as the location and availability of the
services they need, the structure of the namespace into which they export their bindings, the DCE identity
and privileges under which the server must run, and many similar issues. A successful server will be one
that interacts correctly with other components while imposing a minimal load on the DCE environment and,
most important, can be successfully and easily administered.

To meet these requirements, application components must interact with each other and with other DCE
components in a consistent and well-behaved manner. In this context, one can think of DCE applications
as having to meet application-level and administrative interoperability requirements. The Style Guide is, in
part, a guide to such requirements. Given the enormous variety of programming and administrative
mechanisms that DCE makes available to the programmer, the Style Guide provides a set of policy
recommendations for the use of those mechanisms that will maximize the application-level and
administrative interoperability of DCE applications.

In addition to being complex, DCE application programming involves elements that are likely to be
unfamiliar to many programmers, such as remote parameter passing, name services, and distributed

2 DCE Application Development Guide: Introduction and Style

security services. Another goal of the Style Guide is to suggest wise uses for these tools, since many of
the familiar local programming models are inadequate. These recommended policies are especially
important in the area of security: an application that fails to follow them is likely to be insecure.
Recommended policies in some other areas, such as execution semantics and locking, may also
fundamentally affect the integrity of a distributed application and should not be lightly ignored. Other
policies, such as those relating to parameter passing affect mainly application performance.

The simple unfamiliarity of many of the concepts can make the actual coding of an RPC application
initially appear to be a daunting task. In traditional C programming you can usually begin with familiar
models—often, with existing code—but with RPC you are unlikely to have such starting points. Therefore,
this guide also provides extensive examples that illustrate the basic uses of many important elements. For
example, in developing an ACL manager, you may well be able to use the sample application's ACL
manager as a starting point.

The sample code is intended to suggest certain styles of usage that will probably prove useful in many
situations. Obviously, these styles are only suggestions: you will certainly develop your own DCE
programming style as you develop DCE applications.

 General Policies

The Style Guide embodies a variety of basic assumptions. These form the basis for a set of high-level
policy recommendations that cross the boundaries of the specific services discussed in later chapters.
These are:

� Servers are generalized providers of the services specified by their published (IDL) interfaces. That is,
servers should encapsulate the services they provide in such a way that naive clients, with no
knowledge of the specifics of server implementation, can successfully make use of these services via
the remote interfaces. In this sense, servers are much like libraries. One should not assume that
clients will be written by someone with knowledge of server internals. Where appropriate, define
wrapper routines for the IDL operations to shield developers from binding handles and other RPC
peculiarities.

� Servers should make their resources known to clients using standard mechanisms. In particular, they
should export their bindings according to the recommended service models, use name and endpoint
services rather than fixed bindings and well-known endpoints, and associate exported objects with
UUIDs.

� Clients and servers should be portable, using DCE provided mechanisms instead of operating system
and transport-dependent mechanisms. For example, data streams should be communicated via the
RPC pipe mechanism rather than socket calls. The AES/DC is the definitive guide to application
portability using the DCE mechanisms.

� Distributed applications make greater administrative demands than non-distributed ones. Clients and
servers need to be written with an eye to minimizing and simplifying administrative tasks. This means,
for example, that

– Applications need to be as configuration and location independent as possible. In particular, this
means giving careful thought to the use of name services for advertising and finding resources.

– Applications require both local and DCE identities and privileges. They should follow the
recommended models for acquiring and maintaining these privileges and identities.

– Servers should be administratively interoperable; that is, they should behave like the standard
DCE servers, exporting the recommended management interfaces, exporting ACL managers,
logging errors and messages, and providing for the standard startup and shutdown mechanisms.

� Distributed security is inherently more complex than local system security (you cannot just “lock the
door”). Applications should follow the recommended security policies rigorously.

 Chapter 1. Introduction to DCE Application Programming 3

� Clients and servers should follow the recommended internationalization guidelines to ensure character
set interoperability.

Application Development Overview

The remainder of this first chapter consists of a fairly detailed overview of each of the separate steps that
a developer usually has to perform (or have the application perform) from the beginning of coding to the
end of execution of a successful DCE application.

Before you begin a serious study of the contents of any part of this guide, or indeed of any other book in
the z/OS DCE library, you should read the z/OS DCE Introduction. It contains clear and comprehensive
overviews, with illustrations, of all the DCE components and of the integrated DCE as a whole; many
concepts and details are explained there that are necessary to a full understanding of what is described
here.

If you do not find information about topics you are interested in either in this guide or in the z/OS DCE
Application Development Reference, you should also look in the z/OS DCE Administration Guide and the
z/OS DCE Command Reference. For example, the DCE Cell Directory Service is not accessed directly by
applications (except through DCE RPC NSI or through XDS) so most of the discussion of CDS as a
separate component is found in the administration documentation. Although the DCE Security Service is
documented in the development books, certain aspects of it important to application developers (for
example, adding new principals to the security registry database) are found only in the administration
books.

Several key methods underlie the successful development of DCE applications programs. These
methods, explained in this chapter, are:

� A set of tools for distinguishing the component applications programs, for describing how they work
together, and for manipulating and managing DCE components both locally and remotely.

� A method for establishing the interface between the component parts.

� Methods to install and register a server, so that clients can use it.

� Methods to set up clients so they can use servers.

Most of the effort of developing a DCE application usually lies in the familiar steps of planning, writing and
compiling the necessary C code, linking the result with the DCE library, the definition side-deck associated
with DCE DLL, and other modules, and executing it (perhaps repeatedly). However, there is an important
preliminary task which must be performed before you write any other code. Before you can implement the
application's client and server, you must write and compile an interface definition file in which you define
the application's client/server interface.

This interface, defined in the DCE Interface Definition Language (IDL), consists of a set of “prototypes” for
the remote procedure calls your client(s) will be requesting your server(s) to execute. After you have
written this file, you compile it with the DCE IDL compiler. The final output of IDL compilation is a pair of
object files, one for the server module and one for the client, which you must later link with the compiled
output of your server and client implementation code. These two IDL output files contain the server and
client stub code, where all the details of remote execution, data transfer, and so on, are managed in
conjunction with the DCE runtime.

The IDL compiler also generates a header file for inclusion in the server and client source files. It contains
all the declarations that result from the IDL file definitions. Among these are, for example, the interface
specification identifier, which will be used at runtime to describe the interface being defined in the
programs.

4 DCE Application Development Guide: Introduction and Style

Once you have linked the stub files (and the DCE library) to their respective client and server modules, the
IDL-generated stubs make the client and server seem to communicate directly through the operation
signatures you defined in the original .idl file, although in actuality client/server communications pass back
and forth through layers of stub and runtime processing, which are necessary to send and receive the
data over the network. Figure 1 illustrates how the combination of IDL (by means of the stubs it
generates) and the RPC runtime routines shields both client and server from the details of network
communications.

Figure 1. The Combined Effect of IDL and the RPC Runtime

Once the work of defining an interface has been completed, the task of implementing the interface (that is,
coding the operations, along with the rest of the necessary initialization and management routines, in
some programming language) begins. The rest of this chapter consists of detailed explanations of the
DCE application development steps from start to finish. For a practical example of the result of such a
process, refer to the code for the DCE sample application sample.

Each of the DCE components (with the exception of CDS, which is accessed through the RPC NS API) is
discussed in depth in separate parts of this guide. You should also refer often to the z/OS DCE
Application Development Reference, which contains information about all of the DCE library routines
mentioned in the following sections.

Overview of DCE Application Development Steps

The rest of this chapter consists of a step-by-step checklist of each of the decisions that a programmer
must make in developing a typical DCE application. Each set of decisions or choices is combined into
one step. The combination of all these steps takes you from the initial coding stages into and through the
normal course of execution of the application itself. The underlying intention of this arrangement is to give
you a useful mental model of the overall code development process.

The four basic phases of DCE application development are as follows:

A. CLIENT and SERVER: Define the IDL interface [Steps A1 to A4]
B. SERVER: Set up and listen [Steps B2 to B8]
C. CLIENT: Bind to and invoke the server [Steps C1 to C4]
D. SERVER: Service request(s) [Steps D1 to D5]

 Chapter 1. Introduction to DCE Application Programming 5

Following is an overview list of all 21 steps, separated into the four main phases previously described.
Each step's numeral is followed by a / (slash) and the terms Client and/or Server to indicate whether it
applies to the application's server or client, or both.

A. CLIENT and SERVER: Define the IDL interface.

A1/Client and Server:
Generate the interface UUID.

A2/Client and Server:
Write the .idl file.

A3/Client and Server:
Write the .acf file (optional).

A4/Client and Server:
Process the files with the IDL compiler.

B. SERVER: Initialization.

B2/Server:
Set Up the Server's Objects.

B3/Server:
Set Up Security.

B4/Server:
Define the manager Entry Point Vectors (EPVs).

B5/Server:
Register the Server.

B6/Server:
Specify multithreadedness.

B7/Server:
Listen for incoming service requests.

B8/Server:
Cleanup When Server Terminates.

C. CLIENT: Bind to and invoke the server.

C1/Client:
Multithreaded Client Design.

C2/Client:
Import the binding information from the namespace (CDS).

C3/Client:
Annotate the binding handle for security.

C4/Client:
Invoke an RPC interface operation.

D. SERVER: Service the request.

D1/Server:
Get the client's credentials.

D2/Server:
Get the object's Access Control List (ACL).

D3/Server:
Make the authorization decision.

6 DCE Application Development Guide: Introduction and Style

D4/Server:
Service the request.

D5/Server:
Return the results to the client and resume listening.

Application Development Tools

The following DCE tools allow developers to define and manage a set of programs intended to run in a
DCE environment.

 � Unique Identification

Because DCE involves the interaction of many distinct programs, operating on several processors that
may be quite remote from each other, every entity (such as programs, interface definitions, and so
forth) needs a unique identifier. This identifier is provided by the UUID generator.

� Interface Definition Language

Applications programs that are to work within DCE can be written in any of several programming
languages. The two halves of a client/server pair need not be in the same language. In order to
permit this flexibility, each application's client/server interface uses a common language, called IDL. It
is supported by an IDL Compiler.

� Attribute Configuration Language

To allow developers to control the interface between local application code and the RPC interface,
there is an optional attribute configuration language supported by the IDL compiler.

� Remote DCE Management

A host daemon (dced) and a control program (dcecp) provide capabilities for management of a host
and its servers.

In addition, DCE provides an extensive application programming interface that includes routines for
configuration, using threads, managing servers, and interacting with the other DCE services.

DCE UUID Generator

The UUID generator uuidgen is an interactive utility that creates UUIDs (Universal Unique Identifiers). A
UUID is a hexadecimal number that contains information that makes it unique from all other UUIDs.
Applications use UUIDs to identify many kinds of entities, including interface definitions. Consequently,
application developers typically use the UUID generator when they are creating their interface definition
files.

To run the UUID generator, issue the uuidgen command. This command offers several options, including
an option to create a template interface definition file (an .idl file) containing a newly generated interface
UUID. For complete information about generating UUIDs and template interface definition files, see the
z/OS DCE Application Development Guide: Core Components. Refer to the z/OS DCE Command
Reference for a description of the uuidgen utility and its options.

 Chapter 1. Introduction to DCE Application Programming 7

DCE Interface Definition Language

As was mentioned earlier in this chapter, developing a DCE application involves writing and compiling an
interface definition, which defines the application's client/server interface. Application developers use the
DCE Interface Definition Language (IDL) to write the interface definition. IDL is a high-level descriptive
language whose syntax resembles that of ANSI C. IDL is a declarative, not a procedural, language.
Some of the important attributes specified with IDL are the following:

 � For interfaces:

uuid Specifies the interface's UUID.

version Specifies the interface major and minor version number.

 � For parameters:

in Signifies a parameter whose value is passed from the client to the server.

out Signifies a parameter whose value is passed from the server to the client.

� For data types:

handle Specifies a customized binding handle. See Chapter 6, “Binding” on page 203 for
a discussion of binding handles and binding methods in more detail.

context_handle Specifies a context handle, which is a pointer to state information that the server
uses and which is maintained across RPC invocations. An example of a context
handle is a file pointer. The z/OS DCE Application Development Guide: Core
Components discusses context handles in more detail.

IDL's operation attributes include specifiers for execution semantics: whether the operation can be safely
executed more than once, whether a response is expected, and so on. The default is that operations can
be executed at-most-once. Parameters (the arguments supplied by the client when it makes the remote
call) can be specified as input to the server, output to the client, or both. See the z/OS DCE Application
Development Guide: Core Components for a complete description of IDL syntax and usage.

DCE IDL Compiler

The DCE IDL compiler idl processes interface definitions written in IDL and generates header files and
stub object code. (The compiler generates source code for the stubs in ANSI C.) The code generated
from an interface definition by the compiler includes client and server stubs.

Note: Stub files used on the z/OS DCE platform must be generated with the z/OS DCE IDL compiler.

The compiler also generates a data structure called the interface specification, which contains identifying
and descriptive information about the compiled interface, and creates a companion global variable, the
interface handle, which is a reference to the interface specification. Each header file generated by the IDL
compiler contains the reference the application code needs to access the interface handle. The interface
handle allows the application code to refer to the interface specification in calls to the RPC runtime.
Runtime operations obtain required information about the interface, such as its UUID and version
numbers, directly from the interface specification.

You run the IDL compiler by issuing the idl command. See the idl information in the z/OS DCE
Command Reference for a description of the idl command and its options.

8 DCE Application Development Guide: Introduction and Style

Attribute Configuration File

Application developers can use an optional attribute configuration file (ACF) to tailor how an RPC interface
appears to local application code and how the local application code interacts with the RPC interface. The
Attribute Configuration File (ACF) is written in the Attribute Configuration Language, which is a companion
language to IDL. When the IDL compiler is invoked, it searches for an attribute configuration file in
addition to processing the interface definition file.

An ACF modifies how the IDL compiler interprets an interface definition. For example, an ACF can specify
a subset of operation declarations for a client stub so that the client stub contains declarations for only the
operations that the client application code needs for its remote procedure calls. Limiting the client's
access to the remote procedures offered by servers reduces the size of the client stub. Another action
you can control with an ACF is defining how a client establishes a binding with a server that implements
the called interface.

For complete information on the set of ACF attributes, see the z/OS DCE Application Development Guide:
Core Components.

DCE Host Daemon

Each DCE host runs a DCE Host Daemon (dced) to provide remote DCE management services for a host
and its servers. The dced provides remote management of DCE-related host and server data, it provides
remote control of a host's servers, and it maintains host-specific state information for DCE such as the
host's login identity. From the server's perspective, dced is a central point where all servers can
consistently inform their host about themselves. From the host's perspective, dced gives clients,
management applications, and DCE administrators (via the dcecp) a focal point from which to find out
about (and even control) servers.

The most important feature of the dced is that it provides the endpoint mapper service. This service
maintains the host's local endpoint map for local RPC servers and looks up endpoints for RPC clients. An
endpoint is the address of a specific instance of a server that is executing in a particular address space on
a given host. Each endpoint can be used on a host by only one server at a time. The endpoint map is
the system-specific database on each host, in which servers register their endpoints and associated
addressing information (information about communication protocols, objects, and so on). A server
registers separate endpoints for each of its RPC interfaces and any objects the server offers with the
interface.

If a client makes a remote procedure call to a host without providing an endpoint, the dced searches its
endpoint map for the endpoint of a compatible server. Upon finding a suitable endpoint, the endpoint
mapper service (depending on the protocols used) forwards the call to that endpoint or returns the
endpoint to the client's runtime, which sends the call to the server at that endpoint.

Other remote services of dced include host data management, server control, security validation, and key
table management. These are described in detail in the z/OS DCE Application Development Guide: Core
Components.

 Chapter 1. Introduction to DCE Application Programming 9

DCE Control Program

Although the DCE control program, dcecp, is intended as an administrator's tool, developers will find it
invaluable for examining and modifying many aspects of the DCE environment. It can be used in
constructing installation scripts, as in these examples:

� For exporting binding information to a namespace, instead of putting C code in your application to call
the NSI routines, rpc_ns_...(), you could write a dcecp script that calls rpcentry export and its
related commands.

� For installation, you might need to create a principal name and/or set an ACL on it. Instead of writing
C code in your application's initialization section to call sec_rgy_pgo_...() and sec_acl_...(), you could
ship a dcecp script that does the following:

principal create ...
acl mod /.:/sec/principal/...

� It is recommended that you have dced start your application by using server configuration information.
It is generally better to do this by writing a dcecp script that sets up the server configuration
information (the arguments to start the executable) rather than doing it with C code that calls the
dced_server_create() API.

In general, dcecp scripts for server configuration allow better flexibility than embedded C code.
Furthermore, unlike embedded code, the script does not persist after configuration is done.

The dcecp can also be useful for debugging, as these examples show:

� You can check exported information in the namespace with rpcentry show, rpcgroup list, or
rpcprofile show.

� You can use server ping to see if your server is running and receiving requests.

� If your server was set up to be started by dced, you can start it by using the server start command
and can view the startup parameters by using server show -executing.

See the z/OS DCE Command Reference for more information about dcecp commands.

 DCE API

DCE provides a wide range of application programming interface routines. All of the following are
available:

� A set of general DCE routines provide the means for configuration, handling messages, using the
backing store, and managing the DCE daemon, plus other functions.

� The DCE thread routines provide thread control, including thread creation, conditional waiting,
priorities, and locks.

� The DCE remote procedure call routines provide tools to establish and manage servers, and also
include utilities for use by clients and by servers.

� The DCE directory service routines are a set of X/Open directory service routines that provide access
to the Cell Directory Service.

� The DCE distributed time service routines obtain timestamps, translate between timestamp formats,
and perform time calculations. The routines can be used from server or clerk systems to determine
event sequencing, duration, and scheduling.

� The DCE security service routines allow developers to create network services with complete access
to all the authentication and authorization capabilities of DCE Security Service and facilities.

10 DCE Application Development Guide: Introduction and Style

The Interface Definition

Once you have designed your DCE application and have decided which procedures are needed, and
which will be remote procedures, the next step in developing the application is to write one or more
interface definitions that describe the remote procedures your application's clients will be requesting your
application's servers to run.

To create an interface definition, follow these steps:

1. Generate an interface UUID and a skeleton .idl file with the uuidgen utility.

2. Write your interface operation declarations in IDL, using the skeleton .idl file you generated with
uuidgen as a base.

3. Write the attribute configuration file. This is an optional step that you take only if you want to alter the
IDL output in various ways.

4. Compile the completed interface definition file with the IDL compiler.

The next sections describe these steps in more detail.

Generate the Interface UUID

Interfaces, like most other objects and entities in DCE, are identified by associating each one with a
128-bit Universal Unique Identifier (UUID). An interface's UUID serves to identify it throughout DCE.
Every interface in a DCE application must have a UUID assigned to it.

When you define a new interface, you must generate a UUID for it. Consequently, the first step in
developing an interface definition is to run the uuidgen utility to generate a UUID for the interface.

Typically, you run the uuidgen command with the -i option when generating an interface UUID. The
command line has the following syntax:

uuidgen -i > your_interface_name.idl

or uuidgen -i -o your_interface_name.idl

where your_interface_name is the name you have given your interface, and .idl is the suffix that all
interface definitions use by convention. The uuidgen utility generates a file named
your_interface_name.idl, that contains a skeleton of an interface definition and includes the newly
generated UUID for the interface. See the z/OS DCE Application Development Guide: Core Components
for more information about the contents of this skeleton file. Refer to the z/OS DCE Command Reference
for a complete description of uuidgen.

Write the Interface Definition File

The .idl file is where the set of remote operations that constitute the interface are defined. The .idl file
defines and characterizes the interfaces to the server implementations of the remote operations (which
you write, in C source code, then compile and link to the stub code output by the IDL compiler). Thus, an
.idl file's contents is like a set of “network prototypes” for a set of operations. The IDL definitions in the
interface definition file determine not only how the operations “look” to client and server (that is, the
operations' parameter types, and so on), but also what the data looks like when it is transmitted back and
forth between clients and servers in a distributed application.

An interface definition file consists of two basic components:

 Chapter 1. Introduction to DCE Application Programming 11

� An interface header

An interface header contains an interface UUID, interface version numbers, and an interface name.
An interface name is an easy-to-read local name that is not guaranteed to be unique; it is merely a
convenience. It is helpful if the interface name reflects the nature or purpose of the interface.

� An interface body

An interface body declares any application-specific data types and constants, and contains directives
for including data types and constants from other interfaces. The interface body also contains the
operation declaration of each remote procedure to be accessed through the interface. An operation
declaration identifies the parameters of a procedure in terms of their data types, access method, and
call order, and declares the data type of the return value (if any).

The skeletal interface definition produced by the uuidgen utility provides an interface header that contains
the newly generated UUID for the interface, a version number, and a dummy string INTERFACENAME.
Replace this dummy string with the name of your interface, then add any additional interface header
attributes your application requires (see the z/OS DCE Application Development Guide: Core
Components for a complete description of interface header attributes).

The skeletal interface definition file also provides an interface body, which consists solely of an empty pair
of braces (for example, {}). You fill in the space between the braces with your RPC interface's import,
constant, type, and operation declarations, written in IDL. The z/OS DCE Application Development Guide:
Core Components explains this process in more detail. In addition, consult the “Interface Definition
Language” chapter of the same book for a complete description of the IDL syntax for specifying import,
constant, type, and operation declarations.

Note that a server can implement more than one interface. In this case, you define each interface in a
separate .idl file and compile it separately with the IDL compiler. You then link the implemented interface
operations in various source code files with the IDL output.

Write the Attribute Configuration File (ACF)

The Attribute Configuration File (your-interface-name.acf) is an optional additional input file to the IDL
compiler, that, if present, affects the IDL compiler's output in various ways. The difference between the
purpose of the .idl and an .acf file is that while the .idl file defines how the network communications
between the client and server are handled, the .acf file, if one is present, affects only the interaction
between the stub code modules and the developer code that they support. In other words, changing the
contents of an .acf file has no effect on the network communications between the client and server.

Nevertheless, some of the features offered by an .acf file are very important, and they cannot be obtained
by any other means. For example, The comm_status ACF attribute allows the status code of a
communications failure that occurs in an RPC to be stored as a parameter or returned as a result, rather
than being raised to the caller code as an exception. This attribute can only be declared in an .acf file; it
cannot be declared in an .idl file. Another very important function of the .acf file is the specification of a
binding method to be used by remote clients of the application. Three methods are available:

 � auto_handle

 � implicit_handle

� explicit_handle (the default)

These binding methods are described in Chapter 6, “Binding” on page 203. The binding method you
choose determines how much attention your server's clients will have to devote to the upkeep of their
binding handles.

12 DCE Application Development Guide: Introduction and Style

The z/OS DCE Application Development Guide: Core Components provides a description of the ACF
attributes available for use in attribute configuration files.

Process the Files with the IDL Compiler

IDL's input is an xxx.idl and (optionally) an xxx.acf file. Its default output is a header (xxx.h) file, that
contains definitions and declarations derived from the input for general use in the development source
code, and two stub files, one for the client and one for the server, which contain runtime code for
marshalling and unmarshalling, message handling, and all the other details of managing network
communications. The stub files are output as object code (xxx_cstub.o and xxx_sstub.o) suitable for
linking with the developer's compiled code. The IDL compiler generates C source code as an intermediate
step in the compilation process, and the output of this step can also be saved in a pair of files
(xxx_cstub.c and xxx_sstub.c).

In order for a pair of client and server stubs to interoperate, they should be generated from the same
interface definition (.idl) file, but they do not have to be generated with the same Attribute Configuration
File (.acf). The compatibility rules for interface version numbers also apply (see the z/OS DCE Application
Development Guide: Core Components).

Note: Stub files used on the z/OS DCE platform must be generated with the z/OS DCE IDL compiler.

For further information on the IDL compiler, see the idl information in the z/OS DCE Command Reference.

The Server Initialization

Servers must initialize some data and notify various DCE services about themselves prior to servicing
RPC requests. At a minimum, servers must register with DCE and then go into a wait state listening for
remote procedure calls. In addition to these minimum tasks, your application may first parse the input
arguments, obtain information about how it was started using dced API calls, and establish the proper
message tables.

DCE applications should be started in such a way that they can be controlled by dced. When the server
is installed, the dcecp server create operation (or a custom made server management application) is
commonly used to establish the server's configuration with its host dced. This configuration data includes
among other things the program name and its arguments, the CDS entry name to use for exporting to the
name service, and the valid starting methods. Installing your servers in this way does not compromise
their security because dced operations are protected with Access Control Lists (ACLs), and the major
advantages include the following:

� You do not have to write any complex management code for each server

� Your servers are like other DCE servers in that they can all be managed consistently

Depending on how the server is configured, dced can start it in the following ways:

� At boot time when the DCE daemon itself starts

� Explicitly via the dcecp server start operation (or from another application that called
dced_server_start())

� After a failure of the server it can be restarted

If dced did not start the server, it cannot control it. Therefore, one of the first things your server should do
is to verify that dced started it by obtaining the configuration information:

 Chapter 1. Introduction to DCE Application Programming 13

 server_t "server_conf;
 .
 .
 .
 dce_server_inq_server(&server_conf, &status);

if(status != error_status_ok) {
 .
 .
 .

Additional routines such as dce_server_inq_uuids() and dce_server_inq_attr() are also useful for
obtaining information from dced about the running server.

Robust servers usually perform some or all of the following initialization tasks:

� Set up the server's objects. This includes creating and storing UUIDs for all necessary objects and
object types, and grouping objects by type.

� Set up the security environment which includes setting authentication information, establishing the
server's principal identity, and creating ACL managers for each type of ACL object.

� Define manager entry point vectors (EPVs) for each set of interface operations.

� Register the server with DCE. This includes the following: registering the interfaces and the
associated EPVs for the operations, establishing the network protocol sequences and endpoints on
which the server will listen, registering endpoints and other binding information in the endpoint mapper
service, and exporting binding information to the CDS namespace.

� Specify how the server will be multithreaded.

� Listen for incoming requests for remote procedure calls.

� Clean up the program state and environment affected by the server prior to the server's termination.

Set Up the Server's Objects

The term object is a very general term that has meaning specific to each application. DCE uses object
UUIDs to uniquely identify any object. The creation of object UUIDs, the determination of what (if
anything) constitutes an object for a server application, and the association of these objects' UUIDs into
collective types are all your application design decisions.

Object UUIDs have a double use in the routing of RPCs, and you may at first find this a bit confusing.
One use of object UUIDs is in the DCE RPC binding mechanism so that clients can distinguish between
specific resources, and another use of object UUIDs in routing involves grouping objects into types so that
a server can support different implementations of the same interface. (DCE servers also use type UUIDs
to associate objects for each ACL manager.)

If an application makes use of object UUIDs in bindings, it makes them accessible to clients by exporting
them with its bindings when a server registers with DCE.

DCE provides databases (known as a “backing stores”) to maintain typed data, like object UUIDs, between
program invocations.

The following shows sample code to create UUIDs for server objects and how to store them using the
Backing Store API (dce_db* routines) :

14 DCE Application Development Guide: Introduction and Style

 .
 .
 .

/" A "well-known" residual name for the management "object": "/
#define MGMT_OBJ_NAME "server_mgmt"

 /" "/
/" A residual name for a sample object: "/
#define SAMPLE_OBJECT_NAME "sample_object"

 .
 .
 .

/" These are the backing store database handles: "/
dce_db_handle_t db_acl, db_object, db_name;

 .
 .
 .

/" A UUID for a sample object: "/
uuid_t sample_object_uuid = {/" @@415371-f29a-1d3d-b8c8-@@@@c@d4de56 "/
@x@@415371, @xf29a, @x1d3d, @xb8, @xc8, @x@@, @x@@, @xc@, @xd4, @xde, @x56

 };
 .
 .
 .
 uuid_create(&server_uuid, &status);
 .
 .
 .
dce_db_store_by_uuid(db_object, object_uuid, (void ")&sample_data, status);
if ("status != error_status_ok)
{
 print_server_error("dce_db_store_by_uuid()", "status);
 return;
}

/" Finally, store the object UUID keyed by the object ("residual") "/
/" name... "/

dce_db_store_by_name(db_name, (char ")object_name, object_uuid, status);
 .
 .
 .

Names are established so that applications can refer to objects in a way other than through the
cumbersome UUID. Object UUIDs are generated in two ways:

� The uuidgen -s command generates the C-structure form of a UUID that can then be hard-coded into
applications

� The uuid_create() routine generates a UUID “on-the-fly.”

After creating backing store headers (if desired) and opening the backing store databases, UUIDs are
stored by calling the dce_db_store_by_uuid() routine. To store names associated with the UUIDs, call
the dce_db_store_by_name() routine.

 Chapter 1. Introduction to DCE Application Programming 15

Object UUIDs in Bindings: Object UUIDs are often used in the DCE RPC binding mechanism.
The details of RPC binding are explained later in the Section “Register the Server,” and more thoroughly
in the Binding chapter of this guide. It all comes down to this: clients import only partial bindings from the
namespace. These will carry them only as far as the endpoint mapper service of the dced on the
destination server's host; it is dced's job to resolve the binding with a dynamic endpoint.

This means that some registration of bindings must be done by a server with the endpoint mapper. The
minimum two items that have to be registered are interface UUIDs and bindings (the latter of which
contains the server's dynamically allocated endpoints). With this information available, the endpoint
mapper can inspect the incoming RPCs interface UUIDs, select one of the endpoints that was registered
under them, and resolve the partial bindings. In addition, a server can register its object UUIDs with its
endpoint mapper. This allows lookups of endpoints by object UUID rather than interface UUID; the
advantage is that object UUIDs are much more specific than interface UUIDs, which may be registered by
multiple servers at the same host.

Make Object-UUID/Type-UUID Associations: To group together objects into types, the server
makes an RPC library call repeatedly to associate whatever objects it expects will appear in incoming
RPCs with a type UUID. The association is made between each of the expected incoming object UUIDs
and the type UUID. For example:

rpc_object_set_type(obj_uuid, type_uuid, &status);

A type UUID is nothing but a special kind of object UUID. “Type” in this context refers to a group of
ordinary object UUIDs that have all been associated with another specially generated common object
UUID, which can then be used to identify that group of objects collectively.

The type UUIDs in turn are associated with the entry points of manager modules in the server when the
server registers with DCE. An incoming RPC with a “typed” object UUID in its binding will be
automatically directed by the server's runtime to the appropriate associated type manager.

Note that it is not necessary to call rpc_object_set_type() at all if you intend to register only one set of
manager routine implementations per interface.

Summary of the Mechanisms that Rely on Object UUIDs: The type UUIDs and the type
manager vectoring mechanism have nothing to do with the use of the object UUIDs themselves as
lookups for the host endpoint mapper. The type manager vectoring occurs after object UUID binding
happens, at the server. Note also that object UUID binding happens only once in an uninterrupted
client/server session; after the partial binding is completed, communications proceed directly between the
client and server. Type manager vectoring, on the other hand, occurs every time an incoming RPC
contains an object UUID.

The very different nature of the two mechanisms just discussed is somewhat obscured by the order in
which they are initialized in the steps in this chapter. The following list shows the relevant server steps,
with an indication in each instance to which mechanism they are related:

1. When setting up the server's objects, groups of object UUIDs are associated under type UUIDs in the
RPC runtime related to the type vectoring mechanism.

2. When defining the manager entry point vectors (EPVs), each type UUID is associated with a manager
EPV (in the RPC runtime) related to the type vectoring mechanism.

3. When registering the server, object UUIDs and server endpoints are registered with the server's
endpoint mapper and the server bindings (containing the object UUIDs) are exported into the
namespace. These are related to the endpoint mapping mechanism.

16 DCE Application Development Guide: Introduction and Style

Set Up Security

To set up the security environment, the server makes the following DCE library call:

dce_server_sec_begin(dce_server_c_login | dce_server_c_manage_key, &status);

The flags in the first parameter represent the following security issues:

Establish the Server Principal Identity
When first invoked, a server process uses the login context of the user who invoked it until it
assumes its own identity by accessing its secret key (analogous to a user's password) and using it
to get its own login context. Of course, it is possible for a server to simply continue using its
inherited login context. In that case, all it needs to do is use the Security Login Routines to obtain
its principal name and explicitly get its login context.

Manage the Server Key
When a server has its own identity, it takes on responsibility for the upkeep of its password using
the Security Key Management routines.

The decision whether or not to use authenticated remote procedure calls is something of a cooperative
matter between the client and the server. When the client calls rpc_binding_set_auth_info(), it registers
its preferences about authorization and authentication. The client's and server's choices are not required
to agree in order for the client to successfully reach the server. If the client's authentication and
authorization choices do not agree with what the server expects, it is up to the server to decide whether or
not to go ahead with the operations, and how far to cooperate with client requests.

To control access to the server's objects, Access Control List (ACL) managers are also set up.

Define Manager Entry Point Vectors for Each Set of Operations

“Manager” is the DCE term for the part of a server that actually implements a set of interface operations
(the remote procedures), as distinguished from the more or less generic server initialization code
described here. (See sample_manager.c in the sample application discussed in Appendix A, “A
Sample Application” on page 271 for an example of manager code.) A Manager Entry Point Vector
(EPV) is the data structure in which are recorded the entry addresses of the application routines that
implement the server's operations, as offered through an interface. The server's stub code uses the EPV
to dispatch incoming RPCs to the requested operations. For each interface the server supports, a default
manager EPV is generated automatically by the IDL compiler. In order for the RPC runtime to properly
dispatch remote procedure calls to the correct procedure, the server initialization code must declare the
default EPVs and then register them with the runtime. For example,

extern rdaclif_v1_@_epv_t dce_acl_v1_@_epv;
extern sample_bind_v1_@_epv_t sample_bind_epv;

We will later describe registering the EPVs with the RPC runtime.

If more than one version of the same interface is to be supported by the same server, another EPV is
needed for each additional interface version. Interface version numbers are specified by the version
attribute in the .idl file. Additional EPVs are also required if the application implements the procedures in
more than one way. For example, some applications invoke the same remote procedure to operate on
different types of objects. Different objects would likely require different implementations, and thus more
than one manager procedure would be coded. The type manager RPC runtime mechanism, properly
utilized, allows a server to declare multiple EPVs under the same interface, and to have the RPC runtime
direct the incoming remote calls to the correct implementation code.

 Chapter 1. Introduction to DCE Application Programming 17

Register the Server

To register the server with DCE, the server calls the following:

 dce_server_register(
dce_server_c_ns_export, /" flag says register server with CDS "/

 server_conf,
 ®ister_data,
 &server_handle,
 &status
);

The dce_server_register() routine affects a number of components and services in DCE including the
RPC runtime, the local endpoint mapper service, and if the dce_server_c_ns_export flag is set, even the
CDS namespace. The server_conf structure is obtained with a call to the dce_server_inq_server()
routine and represents the configuration dced used to start the server. This contains information needed
to register the server too. The register_data structure contains data about the server's interfaces, entry
point vectors, and type UUIDs.

The following subsections describe the details about what happens when you register a server.

Register the Interface, Type UUID, and EPV with RPC Runtime: Earlier we described
how to establish an entry point vector (EPV) for each set of operations provided by interfaces. Remember
that an EPV is a list of pointers to procedures. The first effect of registering the server is to register the
services offered (represented by IDL interfaces) and the associated EPVs with the RPC runtime.
Registering interfaces with their associated EPVs allow the RPC runtime to use the EPVs to direct an
incoming remote procedure call to the correct procedure implemented in the server's manager code.

We also described earlier the type manager mechanism which uses a type UUID to group together object
UUIDs. With this mechanism, a different EPV can be associated with each type UUID so that different
manager code can be called, depending on an object's type UUID. After these EPVs are registered with
the runtime, incoming RPCs with typed objects in their bindings can be routed by the runtime to the
correct manager code.

The data structure the server uses to establish its services is of type dce_server_register_data_t. This
data structure is initialized prior to the dce_server_register() routine call as in the following example:

 dce_server_register_data_t register_data[2];
 .
 .
 .
 register_data.ifhandle[@] = rdaclif_v1_@_s_ifspec;

register_data.epv[@] = NULL; /" use the default epv "/
register_data[@].num_types = @;

 register_data[@].types = NULL;
 register_data.ifhandle[1] = sample_bind_v1_@_s_ifspec;

register_data.epv[1] = NULL; /" use the default epv "/
register_data[1].num_types = @;

 register_data[1].types = NULL;

The dce_server_register() routine usually establishes all the services for a server at once. This is a
reasonable approach for most applications, but some interfaces for services may have dependencies on
the order in which they are enabled. After the server calls dce_server_register(), it can use a series of
calls to dce_server_disable_service() and dce_server_enable_service() to disable and then later
re-enable any interface offered by the server.

18 DCE Application Development Guide: Introduction and Style

Tell RPC Runtime What Protocol Sequences to Use: The second thing registering the
server does is it obtains a set of endpoints and associates them with the desired protocol sequences.
Endpoints are the host's address numbers on which the server can receive incoming calls. This begins
the process of actually setting up the information that the server's clients will need in order to bind to it.
The endpoints are usually dynamically generated each time the server starts. However, some applications
may use well-known endpoints that are the same every time the server starts. If well-known endpoints are
used, they are typically defined in the interface definition with the endpoint attribute.

In the default case, all valid protocol sequences are used when the dce_server_register() routine is
called. The dce_server_c_no_protseq flag can be passed in the first argument to the routine in cases
where dynamic assignment of endpoints is not desired; for example, when well-known endpoints (specified
in the IDL definition) are being used.

Register the Binding Information with the Endpoint Mapper Service: After server
registration obtains the endpoints, the endpoints, protocol sequences, and object UUIDs are registered
with the endpoint mapper service of the local host's dced.

Typically the server has received a certain number of endpoints dynamically allocated on its host machine.
However, when prospective clients import binding information from the namespace, they get partial
bindings. When they first try to contact the server, the partial binding will get them only as far as the
server's endpoint mapper service. The purpose of registering endpoints is to let the endpoint mapper
know what endpoints belong to the server so that it can fill in the partial bindings as they arrive and route
the incoming remote calls on their proper ways. Subsequent remote calls executed with the same
bindings will go straight to the server, since the bindings are now complete.

The purpose of registering endpoints together with object UUIDs is to account for all possible incoming
object UUIDs (that is, object UUIDs that could appear in incoming partial bindings arriving at the endpoint
mapper), and to associate with each of them one of the server's allocated endpoints. Then the endpoint
mapper can simply look up the object UUID, find an endpoint, insert it into the binding, and send the RPC
on to its destination.

An incoming RPC always has an interface UUID associated with it; therefore, if a server registers all of its
endpoints with the interface it is offering, this will usually be sufficient for the endpoint mapper to send the
incoming requests to one of the servers that offer the desired interface, even if there is more than one
such server active on the machine. However, if the application is designed in such a way that the binding
operation should not be generalized to the interface but must be made more specific (in other words, this
server's clients should always bind to this server and no other, even if some other server happens to offer
the same interface), then object UUIDs must be used to accomplish this. “Generic” interfaces offered by
an application (such as the remote ACL or the DCE serviceability interface) require an object UUID in
order to distinguish the application's “instance” of them; unique interfaces, however, do not require an
object UUID.

Of course, the server's interface UUID must also be included in each object UUID/endpoint mapping, since
no RPC will pass the endpoint mapper if it does not have a matching interface UUID for its destination
server. Therefore, the endpoint mapper takes either two or three types of items to be registered, namely

 � Endpoints

 � Interface UUID

and optionally

 � Object UUIDs

It then generates a cross-product table of all possible combinations of all values of the items. This allows
it to find a valid endpoint for every possible valid object UUID/interface UUID combination.

 Chapter 1. Introduction to DCE Application Programming 19

The endpoint mapper is the first point of decision for an incoming RPC with a partial binding. The mapper
makes its decision solely on the basis of the contents of its endpoint map. The object/type and manager
EPV registrations that were done earlier have no effect on the endpoint mapper. Only after a client
request arrives at the server does the server's runtime routines dispatch the request among multiple
managers, if type managers have been registered by the server. The endpoint mapper knows nothing
about registered object types.

Export the Binding Information to the Namespace (CDS): The final task of server
registration (if the dce_server_c_ns_export flag is set in the dce_server_register() call) is to export the
binding information to the namespace. In the usual case, where the server's endpoints have been
dynamically allocated to it, the endpoint information will not be included in the exported handles. Instead,
this information will be filled in by the host's endpoint mapper as the partially bound handles arrive at the
host in incoming RPCs. However, if the endpoints are well-known, they will be included in the exported
binding handles, and clients will thus import fully bound handles.

If you wish, you can use the lower level RPC routine rpc_ns_binding_export() to export individual
services to the namespace, but in this case you should first be sure the flag dce_server_c_ns_export is
not set in the dce_server_register() routine.

As a final note, a client must have a binding handle in order to reach a server, but it does not have to get
the handle from the name service. However, the name service is the recommended way for clients and
servers to find each other because it is a convenient and easy to use service built into DCE.

 Specify Multithreadedness

The application may also spawn an additional thread for a signal handler. For example:

 if (pthread_create(&sigcatcher,
 pthread_attr_default,
 (pthread_startroutine_t)signal_handler,
 (void")@))
 {
 dce_svc_printf(NO_SIGNAL_CATCHER_MSG);
 exit(1);
 }

The max_calls_exec parameter to the rpc_server_listen() routine specifies the number of operations that
the server can perform concurrently in response to client requests. The max_calls_exec parameter is also
used to derive the size of a buffer (the call request buffer) for incoming client requests that cannot be
immediately executed. max_calls_exec specifies the upper limit for the number of RPC threads that will
be spawned by the RPC runtime to handle incoming remote procedure calls. Thus, an important side
effect of rpc_server_listen(), when the specified concurrency is greater than 1, is to create multiple
threads of execution in the server.

The threads are automatically spawned to handle whatever operation is requested by the client. If the
maximum number of manager threads is already active and more incoming calls arrive, the RPC runtime
buffers them in a call request buffer. The size of the call request buffer depends on the max_calls_exec
parameter; the larger the parameter, the bigger the buffer. Incoming calls beyond the call request buffer
capacity are rejected (with an error code) by the RPC runtime.

Although the execution threads are automatically managed by the RPC runtime, the developer is
responsible for coding the manager routines according to thread-safe guidelines so that the threads will
execute properly. For further information on thread-safe programming practices, see Chapter 4, “Threads”
on page 149.

20 DCE Application Development Guide: Introduction and Style

Listen for Incoming Service Requests

In order to begin listening for incoming remote procedure calls, the server calls the following RPC library
routine:

 rpc_server_listen(max_calls_exec, &status);

The max_calls_exec parameter specifies the number of concurrent remote procedure calls the server can
execute. This call normally begins a “semi-infinite” loop, execution of which is terminated only by one of
the following events:

� One of the server's manager routines calls rpc_mgmt_stop_server_listening()

� One of the server's clients makes a remote call using the routine rpc_mgmt_stop_server_listening().
(Note that the server can intercept such a remote call and either allow or prevent it by installing a
function with rpc_mgmt_set_authorization_fn().)

� A management application makes a remote procedure call using the routine dced_server_stop()

� An administrator (or administrative script) uses the dcecp server stop server_name operation

� A signal or exception occurs

From the point of view of the server, the call to rpc_server_listen() blocks until the
rpc_mgmt_stop_server_listening() routine is called. When this happens, the RPC runtime stops
accepting incoming client requests to the server, and when all the currently executing operations are
completed, the call to rpc_server_listen() returns.

Server operations can also be terminated by an exception or signal. DCE Threads defines all exceptions
as “terminating,” which means that execution must be caught by an exception handler (if one exists) and
then be resumed there, or the process will be terminated. Certain signals are defined by DCE Threads as
exceptions, which means that these signals have the same general characteristics as exceptions. For
more information on the DCE Threads exception handling interface, see Chapter 4, “Threads” on
page 149.

Clean Up Code When the Server Terminates

If (or when) the server terminates execution, it should undo its initialization that affected other facilities and
services of DCE. Facilities affected include the CDS namespace, the endpoint mapper service, and
backing store databases such as those used for ACL managers. For the most part, API routines that
cause these kinds of effects have a corresponding API routine to undo them. The following sections
describe the series of routines typically used to clean up after an application.

Unregister The Server: Two important aspects of registering the server is that it registered the
interfaces and EPVs with the RPC runtime, and it established the endpoints (or addresses) on which the
server listened for requests. If the endpoint map contains “stale” data, it can create for a client a fully
bound binding that is not valid. Even though the endpoint mapper service does its own housecleaning
periodically, there is the possibility that these invalid bindings could be created and used. Therefore, it is
a good idea to call the following routine:

 dce_server_unregister(server_uuid, &status);

In addition to unregistering the server's address information from the local endpoint mapper's database,
this routine unregisters all the services (interfaces and EPVs) from the RPC runtime as well.

If your application requires a partial shutdown or a particular order to the shutdown of services, you can
use more specific routines such as rpc_ep_unregister() and dce_server_disable_service().

 Chapter 1. Introduction to DCE Application Programming 21

Unexport from the Namespace: If the server is going to be out of service for an extended
period, it should unexport any information it previously caused to be placed in the namespace. This will
prevent future prospective clients from being misled into attempting to reach the server when it does not
exist, and also will help to conserve resources in the namespace.

Unexporting is automatic when dce_server_unregister() is called if the dce_server_c_ns_export flag
was set when the corresponding dce_server_register() was called. For more specific control, an
individual service previously exported is removed from the namespace with the following routine:

rpc_ns_binding_unexport(entry_name_syntax, entry_name, if_handle,
 obj_uuid_vector, &status);

The CDS namespace is designed to store location data for extended periods of time.

Clean Up Security Information: A call to the dce_server_sec_begin() routine should have a
corresponding call to the dce_server_sec_done() routine to release resources allocated. In addition, your
code should close any backing store databases used for ACL management by using dce_db_close().

The Client Binding and RPC Invocation

To use RPC, a client must first establish a binding to the server. The following steps cover bindings and
binding handles.

The programmer designing clients must decide whether or not to use threads, and should have an
understanding of multithreaded clients. DCE provides a set of tools for multithreaded programming; these
are described in Chapter 4, “Threads” on page 149.

Import the Binding Information from the Namespace

The first important thing that the client does is to acquire a binding to the server it wants to request
services from. From the client's point of view, there are several binding choices to be made.

The first choice is in regard to the binding method to be used; however, this is determined and
implemented as part of the development coding process (the .acf file). The binding method chosen has
an effect both on what the client has to do in the present step to acquire bindings, and subsequently on
what it must do to maintain them. In this step, it will be assumed that either the explicit or implicit method
was chosen. If auto-binding were chosen, there would be no need for a discussion, since the client would
then have nothing to do.

Getting a Handle: The second choice involves how to get a binding handle. Again, this is a choice
that is at least partially dependent on decisions already made. The client can always generate a binding
handle for itself; the problem is where to get the information that belongs in it. There are two general
solutions:

� The client imports from the namespace binding handles that already contain the necessary
information, or

� The client receives the information in string form from user input, from a file, from another server, or
from any other source. It then converts the string into a binding by calling
rpc_binding_from_string_binding().

The normal way for a server to make its location known to clients is to export its binding information into
the namespace. The client can then call the RPC name service library routines

22 DCE Application Development Guide: Introduction and Style

 rpc_ns_binding_import_begin(entry_name_syntax, entry_name,
if_handle, obj_uuid, &import_context, &status);

 rpc_ns_binding_import_next(import_context, &binding_handle,
 &status);

 rpc_ns_binding_import_done(import_context, &status);

to import one or more bindings from the specified namespace entry. The name service sees to it that only
compatible bindings exported under the specified interface, with the optionally specified object UUID, will
be returned to the client. (Note that the interface specification is not contained in the binding, although it
is exported to the namespace entry where it is used by the name service for matching entries to
prospective importers.) The object UUID specified by obj_uuid is contained in the binding, if it is present.
This is the object UUID that was (optionally) registered under a type UUID in an earlier step. Even if
obj_uuid is not specified in the import call, it will be returned in the binding handle(s) if it was exported by
the server.

Entry Name: To determine how the client knows the entry name to import from, the simplest method
is to have the user type it in on the command line.

Binding Compatibility: The protocol sequence used must be supported by both the RPC runtime
and the operating system on the client's machine. However, the RPC runtime implicitly takes care of
binding compatibility when it returns bindings to importing clients; only compatible bindings are returned.

The routines rpc_network_inq_protseqs() and rpc_network_is_protseq_valid() can be used to return
all supported protocol sequences and to determine whether a specified protocol is supported, respectively.

To find what protocol sequence is used in a binding handle, make the following series of calls:

 rpc_binding_to_string_binding(binding_handle, &string_binding,
 &status);

rpc_string_binding_parse(string_binding, NULL, &protseq, NULL,
NULL, NULL, &status);

Annotate the Binding Handle for Security

Now that the client has a binding, it is almost ready to begin RPC operations. One last preliminary task
remains; namely, to specify various security-related parameters to the RPC runtime, which will govern the
(security) conduct of the ensuing client/server relationship. If the client does not require authentication, it
can skip this step completely. The result will be that no authentication will take place between the client
and server. It will then be up to the server to decide how far to go with an unauthenticated client.

Preparation: What the client essentially wants to do now is call the routine
rpc_binding_set_auth_info() in order to specify all the necessary security parameters. However, when it
does this, it should be able to specify its server's principal name, so that the server it binds to can be
authenticated to the client. (The server's principal name is the name by which the server is known to the
Security Service.) The client must also supply a handle to its own login context when it calls
rpc_binding_set_auth_info().

There are several ways to determine the server's principal name:

� The server's principal name could be hardcoded in the client. This is not recommended practice for
reasons of robustness and flexibility.

� The client can be handed the name as input from the command line when it is invoked.

 Chapter 1. Introduction to DCE Application Programming 23

� The principal name can be the same as the name entry (binding information) name.

� The client can query the server's principal name by calling rpc_mgmt_inq_princ_name(). It can then
check group membership by calling sec_rgy_pgo_is_member(), using a known tested group.

The reason for checking group membership has to do with authorization-related decisions that the client
may need to consider. It is not necessarily enough to know that a server has a certain identity; it may
also be necessary that it belong to a certain group in order for it to be fully authorized, from the client's
point of view, to receive the data that the client will send. In other words, the client may need to make a
decision about the server similar in nature to that which the server makes about the client, when it checks
the client's authorization, via ACLs, to do the things it wants to do. Security can be just as important for
the client as for the server; this is the justification for having to make the extra calls described here.

The client retrieves its login context with the following Security Service library routine:

 sec_login_get_current_context(&login_context, &status);

However, this is not usually necessary. The client can, by passing a NULL value to
rpc_binding_set_auth_info(), simply use its default login context.

In any case, note that this login context already exists; the client merely retrieves it. (The client inherited
its login context from the user principal who executed it.) The client can now set up for authenticated RPC.

Setting Up for Authenticated RPC: The client makes the following call in order to set up the
security characteristics of the communications it is about to enter into with the server:

 rpc_binding_set_auth_info(binding_handle, server_princ_name,
protect_level, authn_svc, login_context,

 authz_svc, &status);

The security parameters specified here include protect_level for level of protection performed (for example,
authenticate only at the beginning of each RPC, or authenticate everything received by the server),
authn_svc for the authentication service (including “none”), and authz_svc for the type of client
authorization information that will be supplied to the server.

The usual practice is to pass NULL for login_context here, and thus use the default context.

Note that it is the client who chooses whether or not to use authenticated RPC, as well as the level of
authentication, and how much authorization information about itself to send. It is then up to the server to
accept this arrangement or reject it, or to allow some limited operation with the client, or whatever else it
might decide. The server decides which authentication to use. The client also specifies an authentication
service (in authn_svc), but if this differs from what the server specified, the call to
rpc_binding_set_auth_info() will fail and an error will be returned to the client.

There is an important difference between the rationales of authentication and authorization. Authentication
is performed by the RPC runtime and is only indirectly felt by client and server; authorization, however, is
for the most part implemented explicitly in the server code if it is implemented at all. This difference is the
reason for the larger number of authentication-related arguments that have to be specified in this step.

For further information about authenticated RPC, see the “Authentication” chapter of the z/OS DCE
Application Development Guide: Core Components.

24 DCE Application Development Guide: Introduction and Style

Invoke Remote Procedure Calls

This step is the culmination of all the foregoing steps; here the client makes its first remote call to the
server. This call, which will obviously be application specific (its definition was specified in the
application's .idl file, and possibly modified by the .acf file), will look something like the following:

my_rpc_op(binding_handle, arg1, arg2, arg3);

Note that the presence of the binding handle as a parameter means that explicit binding handles are being
used.

Note also that after all the preceding talk about interfaces, no interface handle appears in the parameter
list. The RPC runtime takes care internally of making sure that the interface offered by the server exactly
matches what the client expects. The my_rpc_op() routine was (or should have been) defined as part of
the application's interface. When the client calls my_rpc_op() in the present step, the client stub code
(which was generated during the IDL compilation step) will include the correct UUID for the interface the
routine is associated with in the data sent out on the network. The RPC runtime uses the interface
specification included with each RPC as a “fingerprint” to ensure that the operation being requested of a
server is in fact implemented by that server. This ensures that interface compatibility is never dependent
on the vagaries of application code.

The Possibility of Binding Failure: Perhaps the most important thing to mention about this step
is that it may not at first succeed. Remember that the client imported a partial binding to the server.
Completion of the binding, and therefore of the remote call, depends on the endpoint mapper's being able
to successfully complete the incoming binding with a good endpoint for either the specified server (if one is
specified) or for one of its own choosing. This in turn depends on the up-to-dateness of the host's
endpoint database, and that depends on such things as other servers' being conscientious about
unregistering themselves when terminating, and so on. Even the target host specified may not be valid
when the call is made because of any one of the various network problems that can occur.

In other words, the client should regard an unused binding not as a firm promise that comes directly from
the server, but rather as a well-meant expression of intent passed on by the name service and based on
circumstances not entirely under anyone's control. This is the reason for the series of binding import calls
described earlier. The prudent thing for a client to do after importing a binding is, therefore, to assume
that it will have to perform one or more times a series of steps something like the contents of the following
loop:

1. Annotate the binding handle for security.

2. Try it out: attempt a remote call with it.

3. If the call succeeds, discard the binding import context and proceed to step 5 in this loop.

4. Otherwise, if the call fails, import the next binding and return to step 1 in this loop.

5. Proceed with remote operations until finished.

If all imported bindings happen to fail, this could be because the client's cache of bindings has become
stale. The client could then try calling rpc_ns_mgmt_handle_set_exp_age() with a low time-out value,
and then retry the above loop. A last resort could be to allow the user to type in a string binding.

Note that if you are using the auto-binding method and the binding becomes unusable for some reason,
the RPC runtime will rebind under most conditions.

 Chapter 1. Introduction to DCE Application Programming 25

The Result of Successful Binding: If my_rpc_op() or its equivalent does succeed, the binding
will as a result be complete (even if it was partial before), and the information in it can be regarded with
much more assurance from then on. Subsequent remote procedure calls by the client to the same server
will go straight to the bound-to server.

The Server's Manager of RPC Requests

As was explained, server threads are automatically spawned by the RPC runtime in the server manager to
handle incoming remote procedure calls from clients. The number of calls that can be concurrently
handled depends on the value of the max_calls_exec parameter specified in the call to
rpc_server_listen(). The thread is created by the RPC runtime and begins execution in the operation
requested. When the operation is completed, the thread is automatically terminated (by the RPC runtime).

See also the “Programming with Threads” chapter of the z/OS DCE Application Development Guide: Core
Components and the “Threads” chapter of the z/OS DCE Application Development Reference for a
comprehensive discussion of DCE Threads.

Get the Client's Credentials

As mentioned in the previous step, authentication, if it was specified by the client, has already occurred if
the client's request is received by the server manager. If the client fails to authenticate itself to the server
runtime, its remote procedure call fails before reaching the server's RPC code.

Authentication, if specified by the client and offered by the server, is performed by the RPC runtime; it is
not a responsibility of the application code. However, it is up to the application to formulate its own
security policy with regard to the client, based on the following:

� The level at which the client has been authenticated.

� The client's authorization; that is, whether the client should be allowed to access resources it may
request.

In order to find out the client's authentication and authorization information, the server calls the following
RPC library routine:

 rpc_binding_inq_auth_caller(binding_handle, privileges,
 server_princ_name, protect_level,

authn_svc, authz_svc, &status);

The parameters in this call are analogous to the similarly named parameters in the registration routines.
The server can learn what level of authentication, what authentication service, and what server principal
name the client specified. Of most interest, however, are the privileges and authz_svc parameters. The
privileges parameter is a pointer to whatever information the client is willing to let the server know about
its privilege attributes; authz_svc tells what this information is. It could be any one of the following:

� The client's Privilege Attribute Certificate, containing the client's principal and group UUIDs. These
can be used to look up the client's privilege attributes in Access Control Lists, whose entries are keyed
by principal and group UUID.

� The client's principal name (a string). This also can be used to look through Access Control Lists,
provided that the lists have been annotated with such name strings.

� Nothing. The client chooses not to provide any authorization information.

From now on, it is the server's decision, as implemented by the developer, how to respond to the client's
requests for services and resources, depending on the security information the server has learned about it.

26 DCE Application Development Guide: Introduction and Style

A non-ACL-based strategy may be implemented using the client's principal name string for lookups. The
ACL-based strategy, which is supported by a DCE interface, is described further in the next step.

Get RACF Authorization using RACF-DCE Interoperability

You may want to use the authorization and auditing capabilities provided by Resource Access Control
Facility (RACF) for the server portion of a client-server application that resides on z/OS. With z/OS DCE,
this is possible using the information created when z/OS users are enrolled in the RACF-DCE
interoperability feature. For information on enrolling in and using RACF-DCE interoperability, see z/OS
DCE Administration Guide.

Get the Object's Access Control List (ACL)

This step is reached if the client requests access to any object, resource, or service that is managed by
the server, to which ACLs are attached. As previously mentioned, the application must implement its own
ACL manager if it wants to use ACLs to control access to its resources. For further details on how to go
about creating an ACL manager, see “RPC Threads” on page 162.

In order to allow applications to as easily as possible offer an ACL interface that is uniform with that used
by the DCE components themselves, the remote ACL interface has been built into the DCE library, and
client applications can perform operations on ACLs through another interface, also part of the DCE library,
which calls through the remote interface to the appropriate manager. The remote interface, consisting of
rdacl_...() calls, must be implemented by the server application; clients execute the local sec_acl_...()
routines, which are linked to every DCE application as part of libdce.

For the client, all that is necessary is to possess a binding to the object whose ACL is to be operated on.
As long as the application exposes the resources it manages as accessible objects (via the namespace),
then the DCE ACL interface provides for a client's being able to bind to the object by calling
sec_acl_bind(). (In fact, this kind of object-oriented binding model can be very useful, and is discussed in
further detail in Chapter 6, “Binding” on page 203.) Note that the sec_acl_...() routines use an “ACL
handle” to specify the object whose ACL is to be accessed, so sec_acl_bind() must always be called to
obtain this handle, even if the client is already bound to the object's server.

There is a user interface into the ACL operations, embodied in the dcecp acl command. For further
information, see the z/OS DCE Command Reference.

Server applications can use the DCE ACL library routines to implement ACL managers. The DCE ACL
library is an implementation of the remote ACL (rdacl) interface, designed in such a way as to allow any
DCE application to use it instead of having to implement the interface itself. In DCE 1.0, applications that
wished to use the DCE ACL functionality had to implement the full remote interface themselves; in DCE
1.1 this is no longer necessary. For further information, see Chapter 5, “Security” on page 163.

Make the Authorization Decision

In this step, the server's ACL manager inspects the ACL of the resource (object) under question,
determines whether the client is authorized for the requested access, and takes the appropriate action.

The application may choose to implement more than one type of ACL (reflecting the different kinds of
objects and resources to be protected), thus resulting in several ACL “type managers.”

Although it is up to the application to implement its own ACL storage, testing algorithms and manager
types, there are certain DCE-wide design conventions that should be kept in mind and departed from only
for good reason. Among these are the following:

 Chapter 1. Introduction to DCE Application Programming 27

� Standard DCE ACL entry types: the kinds of entries that can occur in an Access Control List (for
example, user, group, and so on).

� Standard privileges: the kinds of access that a principal can have to a protected object (for example,
read, write, and so on).

� Standard inheritance rules: these rules govern the default characteristics of ACLs created for newly
created objects.

� Standard access algorithm: the order in which a client's credentials are matched against the various
possible entry types.

Information about these topics for application developers designing their own ACL model can be found in
the “Access Control List Application Programming Interface” chapter of the z/OS DCE Application
Development Guide: Core Components, where all the DCE authorization conventions are described in
detail.

Service the RPC Request

If the client's request is determined to be properly authorized, then the requested operation can proceed.

Note that this step and the steps involving getting the object's ACL and making the authorization decision
are somewhat intertwined. Something like the following could occur:

1. The server wakes up in some routine defined in its manager code. For example, if the client executed
the call my_rpc_op(), then the server will wake up in the routine that implements this remote call.

2. Execution of the my_rpc_op() routine requires the insert privilege for the application's database
my_database. So my_rpc_op() begins by checking the client's relevant privilege attribute by making
an internal call to the application's ACL manager.

3. If the client is found to have the requisite privilege, my_rpc_op() proceeds.

The remote procedure executed in this step is written by the application developer.

Return the Results and Resume Listening

At the completion of the operation, the RPC thread that was automatically spawned to execute it is
terminated by the RPC runtime.

From the server's point of view, the result of completing the remotely called routine is that it reenters the
“listen” loop, waiting for further remote calls. The server's runtime handles all the communications details
of actually sending any requested data to the client. As far as the server is concerned, it is still blocking
on the call to rpc_server_listen() which was made earlier. If max_calls_exec was specified to be greater
than 1 in that call, other threads may still be executing at this time in response to other requests that have
been received from other clients. In any case, the call to rpc_server_listen() will not return until one of
the server's own management routines, or a client, makes a successful call to
rpc_mgmt_stop_server_listening(). If this happens, the RPC runtime will stop accepting incoming client
requests to the server. When all the currently executing operations have been completed, the call to
rpc_server_listen() will return.

The other way that the rpc_server_listen() call can return is as a result of a signal or exception.

From the client's point of view, the server's return at the end of its remotely called routine results in the
client's returning from a seemingly locally executed routine.

28 DCE Application Development Guide: Introduction and Style

Continue: The client now goes on about its business, which may include performing other remote
procedure calls.

Note that there is no housekeeping burden placed on the client with regard to the termination of the
relationship with a server. However, a long-lived client might want to make use of the rpc_binding_free()
routine to free memory that was allocated for no-longer-used handles. The client should also call
rpc_ns_binding_import_done() to clean up the resources used by the NSI routines. If another binding
handle will be needed later on, then rpc_ns_binding_import_begin() will be called again.

Writing a Simple Distributed Application on z/OS

As an entry point to creating actual distributed applications on the z/OS operating system, this “how-to”
section guides you through the application development steps talked about earlier for a simple DCE
application using z/OS DCE.

The following runtime environments are addressed in each step:

� z/OS UNIX System Services shell
� z/OS Time Sharing Option (TSO/E)

 � Batch.

Each step describes the action you take in the above environments. If a particular environment does not
apply, skip that section.

Tools are available with z/OS DCE to assist you in writing your applications. This chapter introduces
these tools and guides you through their use in the Shell, TSO/E, and TSO/E batch environments. In the
TSO/E environment, you can invoke these tools in both batch mode and foreground mode. For batch
mode, use the example JCL contained in this chapter to write and submit your own applications.

High-Level Application Development Steps

This section describes the major steps you follow to create and run your distributed application in the three
z/OS runtime environments. In the Shell environment, the main tools for DCE application development are
the uuidgen facility, the idl compiler, the c89 compiler, and the make facility. In the TSO/E environment,
the main tools are the following REXX EXECs: UUIDGEN and IDL, and Command lists (CLIST): CC and
CPLINK. In the batch environment, the main tools are the following Cataloged Procedures (PROC):
UUIDGEN, IDL, EDCC and EDCPL. In the Shell, you generally use Hierarchical File System (HFS) files
for your applications. In the TSO/E and batch environments, you generally use partitioned data set (PDS)
files or physical sequential datasets.

Some of the more complicated steps and options have been purposefully left out to simplify the process.

1. Creating files for your application
2. Generating a universal unique identifier (UUID) and IDL template file
3. Naming the interface for your application
4. Defining the interface operations
5. Compiling the interface with the IDL compiler
6. Writing the server and manager code for your application
7. Writing the client code for your application
8. Compiling the client and server programs
9. Link-editing your application with the DCE, TCP/IP, and C/C++ runtime libraries

10. Building your DCE application.

 Chapter 1. Introduction to DCE Application Programming 29

Notes:

1. Your IDL file can only be in code page IBM-1047. If you port your IDL file from another platform,
ensure that it is converted to code page IBM-1047. You can use the iconv command to do this
conversion. For more information about iconv, see the z/OS UNIX System Services Command
Reference. Note that the stubs that are output from the IDL compiler are also in code page IBM-1047.

2. In TSO/E and batch environments, the length of the entire information passed using the PARMS
parameter cannot exceed 100 characters. This number includes any commas that are passed to the
program but excludes enclosing parentheses or apostrophes that are not passed. For further
information on the syntax of the PARMS parameter, consult z/OS MVS JCL Reference, SA22-7597.

3. References are made throughout this chapter to ISPF and SDSF panels and tools to help you carry
out the application tasks. Some of these panels may appear to be different on your system, or you
may not be authorized to use certain ones. If you have problems, consult your z/OS Systems
Programmer for alternative methods to accomplish the same task.

Step 1. Creating Files for Your Application

For DCE applications, you typically code the five files contained in Table 1. It lists the HFS files names
and the corresponding PDS file member names. In this book, HFS files and associated directory are
presented in lowercase, while any dataset names and members are presented in uppercase. The name
of your DCE application is represented by applnm for HFS files and APPLNM for PDS files.

For your partitioned data sets, APPLNM cannot be greater than six characters in length.

You do not have to use the naming convention presented in this table for your application files. The
names in the examples are for illustration only. You can generally access either the HFS file or the PDS
file when you use the DCE utilities in the Shell environment. You can only access PDS files when you
use the DCE utilities in the batch or TSO/E environments. You can copy the contents of an HFS file into
a PDS by using the TSO/E OGET command, and you can copy the contents of a PDS file into an HFS file
using the TSO/E OPUT command. Refer to z/OS UNIX System Services User's Guide for more
information on these commands.

Note: In the table below, USERPRFX represents your z/OS logon identification, and APPLNM represents
the name of your application.

Table 1 (Page 1 of 2). User-Written Files for DCE Applications

File Hierarchical File
System

Partitioned Data Set

IDL file1 File name:

 applnm.idl

 USERPRFX.IDL(APPLNM)

C source files2

 � Server
 � Manager
 � Client

File names:

 applnm_server.c
 applnm_manager.c
 applnm_client.c

 USERPRFX.C(APPLNMSR)
 USERPRFX.C(APPLNMMR)
 USERPRFX.C(APPLNMCL)

30 DCE Application Development Guide: Introduction and Style

Table 1 (Page 2 of 2). User-Written Files for DCE Applications

File Hierarchical File
System

Partitioned Data Set

ACF file3 File Name:

 applnm.acf

 USERPRFX.ACF(APPLNM)

Purpose:

1. There is usually one IDL file for a simple DCE client and server application. You
write the IDL file using the Interface Definition Language (IDL). The IDL file
defines all aspects of an interface that affect data passed over the network between
a DCE client and the server. You write the IDL file for your application in “Step 4.
Defining the Interface Operations” on page 37.

2. The C source files contain the DCE and C language source code for your DCE
application. Typically, there are three modules: a server, its manager routines, and
the client. You write this code for your application in “Step 6. Writing Your Server
and Manager Code” on page 39 and “Step 7. Writing the Client Code for Your
Application” on page 40.

3. This optional file is used to code the Attribute Configuration Language that
modifies the interaction between application code and stubs, and to declare certain
DCE attributes.

You can have more than one member in any of the table's partitioned data sets. For example, you can
have multiple members in the IDL file representing many interface definitions, depending on your
application’s requirements. You can also write additional header members that contain special definitions
for your application. For simple DCE applications, typically only one member is required.

During the creation of a DCE application, the files listed in the following table are generated by z/OS DCE
utilities such as the IDL compiler or the c89 compiler. If you use the naming convention of Table 1 on
page 30, you will generate most of the files contained in the table, depending on the options you choose
when you run the z/OS DCE utilities.

Note: The z/OS DCE IDL compiler no longer automatically generates auxiliary files. If you are using a
makefile that contains dependencies on auxiliary files, dummy files can be created by defining
environment variable IDL_GEN_AUX_FILES.

Table 2 (Page 1 of 2). System-generated Files for DCE Applications

File Hierarchical File
System

Partitioned Data Set

Stub files1

 � Server
 � Client

File names:

 applnm_sstub.c
 applnm_csstub.c

 USERPRFX.C(APPLNMSS)
 USERPRFX.C(APPLNMCS)

Header file2 File name:

 applnm.h

 USERPRFX.H(APPLNM)

Object files3

 � Server
 � Manager
 � Client

File names:

 applnm_server.o
 applnm_manager.o
 applnm_client.o

 USERPRFX.OBJ(APPLNMSR)
 USERPRFX.OBJ(APPLNMMR)
 USERPRFX.OBJ(APPLNMCL)

 Chapter 1. Introduction to DCE Application Programming 31

Table 2 (Page 2 of 2). System-generated Files for DCE Applications

File Hierarchical File
System

Partitioned Data Set

Load file4 File name:

 applnm_server
 applnm_client

 USERPRFX.LOAD(APPLNMSR)
 USERPRFX.LOAD(APPLNMCL)

Purpose:

1. The stub files, one for your server and one for your client application, contain the
code for marshalling and unmarshalling data, message handling, and other details of
network communication. The stubs are generated when you compile the IDL file in
“Step 5. Compiling the Interface with the IDL Compiler” on page 37. Depending on
the IDL compiler options you choose, you can generate the stubs directly as object
code instead of C code.

2. The header file is common across your server and client application. It is obtained
from compiling the IDL file in “Step 5. Compiling the Interface with the IDL Compiler”
on page 37. The header file contains declarations and definitions that are for
general use in an application. You must compile the header along with the source
code when compiling either your client or server application.

3. The object files contain the object code for your application that is obtained from
the compile step in “Step 8. Compiling the Client and Server Programs” on page 40.

4. The load files contain the client and server application load modules that are created
in “Step 9. Link-Editing Your Application” on page 45 so you can run your
application.

In the Shell: To enter the Shell, enter OMVS on any TSO/E command line. You do not need to
allocate any hierarchical file system (HFS) files for your DCE applications, but for your convenience, you
may want to make a directory where you can store all your associated DCE application files. The HFS
files are created for you when you first edit them, using the TSO/E OEDIT command. You might also
want to store all files that you generate using z/OS DCE utilities in this directory.

Following are the HFS file extensions (in bold) that are appended to your application name by the z/OS
DCE utilities:

File File extension
header file applnm.h
server stub applnm_sstub.c
client stub applnm_cstub.c

There is no restriction on the length of the IDL file name denoted by applnm if it is an HFS file, as there is
for PDS files.

In TSO/E and Batch: Set up your environment by allocating all the necessary partitioned data sets
for your application. Seven data sets are required:

 � USERPRFX.JCL
 � USERPRFX.IDL
 � USERPRFX.C
 � USERPRFX.H
 � USERPRFX.OBJ
 � USERPRFX.LOAD
 � USERPRFX.ACF

32 DCE Application Development Guide: Introduction and Style

Notes:

1. You do not have to use the above naming convention for your application data sets. The names in
the examples are for illustration only.

2. The application will be members of these allocated partitioned data sets and their names cannot be
greater than six characters in length.

The following table shows example attributes for the above data sets. You should adhere to the record
format and record lengths presented, or you may encounter difficulty running the JCL. You can adjust the
block sizes of your data sets as required for your needs (in multiples of the record length).

You can allocate the above data sets manually using the ‘Allocate new data set’ panel (option 3.2 in the
ISPF utilities) or however you normally do it in TSO/E. For your convenience, z/OS DCE supplies an
IDLALLOC REXX EXEC that allocates the necessary data sets required for a DCE application. Note that
IDLALLOC only allocates data sets that do not already exist.

From TSO/E use the command:

 idlalloc

IDLALLOC will present a panel which includes a DSN PREFIX field allowing for Data Set Name
customization. See Figure 2 on page 34.

The data sets created will be organized as Partitioned Organization (PO). Table 3 describes the data sets
created using IDLALLOC. Verify that your data sets conform to these characteristics by using the ‘Data
set information’ utility before proceeding. When you invoke the IDLALLOC utility, you will see a menu
similar to the one contained in Figure 2 on page 34.

Table 3. Recommended DCE Application Data Set Attributes

Data Set Record Format Record Length

USERPRFX.JCL (Note 1.) FB 80

USERPRFX.IDL FB 80

USERPRFX.C FB 80

USERPRFX.H FB 80

USERPRFX.OBJ FB 80

USERPRFX.LOAD U 6160

USERPRFX.ACF FB 80

Notes:

1. z/OS DCE does not require any particular JCL attributes. These
values are given as an example only.

 Chapter 1. Introduction to DCE Application Programming 33

O P
 ---------------------- DCE APPLICATION DATASET ALLOCATION ---------------------
 COMMAND ===>

 DSN PREFIX ===> USER1.DCE

Suffix Record Record Space Primary Secondary Directory
Format Length Units Qty Qty Blocks

ACF FB 8@ BLOCKS 1@ 1@ 1
IDL FB 8@ BLOCKS 1@ 1@ 1
C FB 8@ TRACKS 1@ 1@ 1@
H FB 8@ TRACKS 1@ 1@ 1@
JCL FB 8@ TRACKS 1 1 1
OBJ FB 8@ TRACKS 1@ 1@ 1
LOAD U @ CYLS 1 1 1
CACF FB 8@ BLOCKS @ @ 1
CIDL FB 8@ BLOCKS @ @ 1
TACF FB 8@ BLOCKS @ @ 1
CTDL FB 8@ BLOCKS @ @ 1
CTCF FB 8@ BLOCKS @ @ 1

 Enter END COMMAND to terminate.
U V

Figure 2. IDLALLOC Utility Menu

You can adjust any of the data set characteristics for your own requirements. You should change the
default values for block size within the IDLALLOC REXX EXEC to optimize the block size to your system’s
DASD devices. If you need the CACF, CIDL, TACF, CTDL, and CTCF files to be allocated, make sure
primary quantity and secondary quantity are set to a number other than zero.

Step 2. Generating a UUID and IDL File

Next, you create a Universal Unique Identifier (UUID) to uniquely label your application’s interface.
Through this identifier, the DCE naming service identifies and locates your application server throughout
DCE. The UUID is generated along with a template for your application’s IDL file when you run the UUID
generator (UUIDGEN) that is available in all three run time environments. Figure 3 shows an example of
an IDL file that is generated using UUIDGEN. The contents of the file are the same in any of the three
environments, except for the UUID generated.

[
uuid(2@818313-4143-19ea-a6e@-@@@@dce12345),
version(1.@)
]
interface INTERFACENAME
{

}

Figure 3. Example of an IDL Template

The 128-bit UUID, in parentheses, is a string of multiple fields of hexadecimal characters separated by
hyphens. Each field has a fixed length. The UUID that you generate is similar to the one presented in the
above example, but is unique for your application across DCE.

34 DCE Application Development Guide: Introduction and Style

In the Shell: Use the example command in Figure 4 to generate a UUID for your application. In
addition to generating a UUID, entering this command creates a template for your application’s IDL file.

uuidgen -i -o <dir_name/applnm>.idl

Figure 4. Sample Shell Command to Run the UUID Generator

In the above example, the uuidgen command is run with the -i option, which specifies that a skeletal
interface definition file is to be generated that includes the UUID. The -o option redirects the output from
your screen to the file designated by <dir_name/applnm>.idl. If you do not specify a directory name, the
file applnm.idl is placed in your current directory. For a complete description of the input parameters for
the UUID generator in the Shell, see z/OS DCE Application Development Reference.

As an example, to create an IDL file for an application called stock in your current directory, use the
command shown in Figure 5.

uuidgen -i -o stock.idl

Figure 5. Sample Shell Command to Create a UUID for STOCK Application

To display the contents of the resulting stock.idl file, enter the following command:

cat stock.idl

The contents of the stock.idl file resembles the IDL file in Figure 3 on page 34 except that it contains a
unique UUID.

Using a Partitioned Data Set: To create your IDL file in a preallocated partitioned data set, replace
<dir_path_name/applnm>.idl in the example given in Figure 4 with the fully qualified data set name
preceded by // and enclosed in double quotation marks. The stock uuidgen example then becomes:

uuidgen -i -o "//'USERPRFX.IDL(STOCK)'"

Figure 6. Sample Shell Command to Create UUID Using a PDS

The contents of the USERPRFX.IDL(STOCK) data set resembles the IDL file in Figure 3 on page 34
except it contains a unique UUID.

In TSO/E: You can also generate a UUID in foreground mode by entering the following TSO/E
command from any ISPF command line:

tso uuidgen uuidgen parameters

To create an IDL file for an application called stock, use the command shown in Figure 7.

uuidgen -i -o "//'USERPRFX.IDL(STOCK)'"

Figure 7. Sample TSO/E Command to Create a UUID for STOCK Application

The IDL file created and stored in USERPRFX.IDL(STOCK) resembles the IDL file in Figure 3 on page 34
except it contains a unique UUID.

 Chapter 1. Introduction to DCE Application Programming 35

Using an HFS File: To create your IDL file as an HFS file, replace "//'USERPRFX.IDL(APPLNM)'" with the
fully qualified path name for your HFS file. If you do not specify a path, the HFS file is created in your
home directory.

The stock IDL file example then becomes:

uuidgen -i -o <your_path>/stock.idl

Figure 8. Sample TSO/E Command to Create a UUID using an HFS File

In Batch: Use the example JCL contained in Figure 9 to generate a UUID for your application. In
addition to generating a UUID for your application, running this JCL creates a template for your
application’s IDL file.

//JOBNAME JOB (ACCOUNT)...your_job_parameters
//""
//" JCL to run UUIDGEN "
//""
//UUIDGEN EXEC UUIDGEN,
// PARMS='your_uuidgen_parameters'

Figure 9. Sample JCL to Run the UUID Generator

Pass any input parameters for the UUID generator using the PARMS statement in the JCL. See z/OS
DCE Application Development Reference for information on the input options when running the UUID
generator.

For example, to create an IDL file for an application called STOCK, use the JCL contained in Figure 10.

//JOBNAME JOB (ACCOUNT)...your_job_parameters
//""
//" JCL to run UUIDGEN "
//""
//UUIDGEN EXEC UUIDGEN,
// PARMS='-i -o "//STOCK.IDL(STOCK)"'

Figure 10. Sample JCL to Create a UUID for STOCK Application

The IDL file created and stored in USERPRFX.IDL(STOCK) resembles the IDL file in Figure 3 on page 34
except it contains a unique UUID.

Using an HFS File: To create your IDL file as an HFS file, replace "//APPLNM.IDL(APPLNM)" with the fully
qualified path name for your HFS file. If you do not specify a path, the HFS file is created in your home
directory.

The JCL to generate the stock IDL file then becomes:

//JOBNAME JOB (ACCOUNT)...your_job_parameters
//""
//" JCL to run UUIDGEN "
//""
//UUIDGEN EXEC UUIDGEN,
// PARMS='-i -o <your_path>/stock.idl',

Figure 11. Sample JCL to Create UUID Using an HFS file

36 DCE Application Development Guide: Introduction and Style

Step 3. Naming the Interface for Your Application.

This is the first step in customizing the IDL file created for your application. Simply replace the string
INTERFACENAME with the name you want for your application’s interface. This step is common across all
three z/OS UNIX environments.

The characters that you may use to make up an interface name include the following:

� Alphabetic characters, A through Z (uppercase)
� Alphabetic characters, a through z (lowercase)
� Numeric characters, @ through 9
� Underscore symbol, (_).

The length of the interface name is a maximum of 17 characters. Because IDL is case sensitive, you can
use lowercase and uppercase characters to represent different interfaces. The IDL compiler rejects any
interface names that do not conform to the above rules.

Step 4. Defining the Interface Operations

Define the operation comprising the interface within the braces and thus define the operation of your
server application. This task includes naming the operation, defining the return values and arguments
passed to your server from your client, and defining the arguments returned to your client from your
server. For more information on writing your interface operations, refer to the “Operation Declaration”
section of the z/OS DCE Application Development Guide: Core Components. This step is common
across all three z/OS UNIX environments.

Step 5. Compiling the Interface with the IDL Compiler

Upon completing the IDL file for your application, you can compile it using the IDL compiler. The IDL
compiler normally outputs three files and two optional files depending, on the contents of your IDL file and
compiler options you choose. All these files are compiled with your application source code:

Table 4. IDL Compiler Output

File Hierarchical File System
File Name

Partitioned Data Set Name

header applnm.h USERPRFX.H(APPLNM)

client stub applnm_cstub USERPRFX.C(APPLNMCS)

server stub applnm_sstub USERPRFX.C(APPLNMSS)

Notes:

1. For PDS names, APPLNM cannot be more than six characters long, or the IDL compiler
will reject it. There is no similar restriction on HFS IDL file names.

The header contains the definitions and declarations derived from the input IDL file that are for general
use in the development source code. The stubs, one for your server and one for your client, contain the
code for marshalling and unmarshalling data, message handling, and other details of network
communications management.

The IDL compiler supplied with z/OS DCE uses an input IDL file to define a set of subroutine interfaces.
Each set of interfaces is identified by its Universal Unique Identifier (UUID). Along with the IDL file is
the Attribute Configuration File (ACF) that controls the IDL compiler’s interpretation of the IDL file. With
the ACF, you can customize the client or server stubs to suit your local environment. For the exact syntax
and available options for running the IDL compiler, refer to z/OS DCE Application Development Reference.

 Chapter 1. Introduction to DCE Application Programming 37

When you ship a server to your users or customers, you must ship the IDL and ACF files as well. The
users can regenerate the client and server stubs after modifying the ACF to suit their local environment.
You do not have to re-create the stubs if customization is not required.

In the Shell: After you have written your interface definition, use the sample command shown in
Figure 12 to compile the IDL file for your application, producing the header and stub files. This command
does not invoke the C preprocessor and the C/C++ compiler. It will generate the stubs for the client and
server.

idl applnm.idl -no_cpp -keep c_source

Figure 12. Sample Shell Command to Run the IDL Compiler

The IDL compiler can also produce stubs in object format by invoking the C/C++ compiler. In this case,
the .c portion of the output file is replaced by .o.

Using a PDS File: To create the stubs and header output into a preallocated PDS file and if your IDL
source file is an HFS file, use the following Shell command:

idl applnm.idl -no_cpp -keep c_source -out "//'<DSNAME>'"

Figure 13. Sample Shell Command to Run the IDL Compiler — HFS File

If your IDL source file is a PDS file, use the following Shell command:

idl "//'USERPRFX.IDL(<IDLFILE>)'" -no_cpp -keep c_source -out "//'<DSNAME>'"

Figure 14. Sample Shell Command to Run the IDL Compiler — PDS File

To run the IDL compiler, the environment variable NLSPATH must be set so that the compiler can find its
catalog of diagnostic messages. The value of this variable must include the string dir/%N, where dir is the
directory path in which the dceidl.cat file resides. When the LANG environment variable is set, you can
set NLSPATH to /usr/lib/nls/msg/%L/%N. The value of the LANG environment variable is substituted for
the %L in the directory path. For example:

export NLSPATH=/usr/lib/nls/msg/En_US.IBM-1@47/%N

Note that the %N in the example is a variable that represents the name of a catalog file. It is not a
directory.

The IDL compiler offers many options that enable you to:

� Invoke the C/C++ compiler and/or preprocessor, if desired
� Specify which directories are searched for imported files
� Select the output files that are generated
� Specify how the output files are named

When you compile the definition of a remote interface, you must ensure that the system IDL directory is
among those that the IDL compiler searches when it searches for imported files, because any remote
interface implicitly imports nbase.idl.

38 DCE Application Development Guide: Introduction and Style

In TSO/E: Use the sample TSO/E EXEC, IDL, shown in Figure 15 to compile the IDL file for your
application and produce the files listed above. You can specify the prefix for your IDL file using the
-userpfx option as shown below. Note that the IDL EXEC handles PDSs only.

idl APPLNM -keep c_source -no_cpp -userpfx USERPRFX.APPLNM

Figure 15. Sample TSO/E Command to Run the IDL Compiler

In Batch: Use the sample JCL shown in Figure 16 to compile the IDL file for your application and
produce the files listed above. The PROC that runs is IDL. Pass any parameters to the IDL compiler using
the PARM='idl_compiler_options' statement. Note that IDL handles PDSs only.

 //JOBNAME JOB (ACCOUNT)...your_job_parameters
 //""
//" RUN THE IDL COMPILER "

 //""
 //IDLCOMP EXEC IDL,USERPFX='USERPRFX',
// PARM='GREET -keep c_source -no_cpp'

Figure 16. Sample JCL to Run the IDL Compiler in Batch

Step 6. Writing Your Server and Manager Code

The server is the first of three C source code files that you write for your application. The server program
is really broken into two parts: the main server routine and the manager routine. These two programs
could be combined; however, the convention is to split them as follows:

� The server routine registers its interface with the RPC runtime, and obtains and exports its binding
information. It contains the generic portion of the server code that initializes the server as a whole to
the DCE system and sets up the server to listen for incoming requests from clients. The generic RPC
functions that the server code likely performs in a simple application are:

RPC function call Description

rpc_server_register_if(...) Registers at least one interface.

rpc_server_use_all_protseqs(...) Tells the RPC runtime to use all supported protocol sequences
for receiving remote procedure calls.

rpc_ep_register(...) Registers endpoints.

rpc_server_listen(...) Listens for remote procedure calls.

After you perform the above initialization tasks, your server is prepared to receive remote procedure
calls from clients.

� The manager routine is the portion of the server that actually carries out the set of operations that you
want the server to perform.

Note: On MVS, multithreading in DCE applications usually requires less below-the-line stack memory
than the default provided by z/OS Language Environment. Thus, for any multithreaded DCE
application, it is recommended that you reset the stack size. DCE server applications are
inherently multithreaded. DCE client applications that use pthread_create() are also multithreaded
and require that you reset the stacksize.

The stacksize can be reset by adding the following #pragma directive in your code prior to any C
source statements, except other #pragmas:

 Chapter 1. Introduction to DCE Application Programming 39

#pragma runopts(STACK(12K,4K,ANY,KEEP))
#pragma runopts(LIBS(4k,4k,FREE)

Note that the LIBS runtime option is only necessary for applications with greater than 150 threads.
See z/OS Language Environment Programming Guide for information on setting runtime options.
Also, refer to “Language Environment Runtime Options Considerations” on page 57 for a
discussion of other runtime options required for DCE applications.

Step 7. Writing the Client Code for Your Application

The client code makes the function call to your server. The client obtains the binding information for the
server from the Directory. Once such items as the correct protocol sequence, the binding handles, and so
on are received from the DCE runtime to establish communications with the server, your client makes the
function call, passing along any required input parameters. Once your client receives the results of the
function call from the server, it may process the parameters received or may make additional function calls
before ending.

Step 8. Compiling the Client and Server Programs

Once you have written the client, server, and manager source code, you are ready to compile them along
with the client and server stubs using the C/C++ compiler. To compile your DCE application, you use the
c89 compiler, the interface to the C/C++ compiler for programs compiled in the shell. In TSO/E, use the
CC EXEC, and in batch use the EDCC PROC; both are supplied by the z/OS C/C++ product.

For DCE applications, you specify the following definitions using the DEFINE C/C++ compiler option, in all
three environments:

 � _DCE_THREADS
 � _OPEN_SYS
 � MVS.

In all three environments the following compiler option is recommended when compiling C source that
contains references to functions or external variables imported from the DCE Dynamic Link Library:

 � DLL

In the TSO/E or batch environments, specify the following minimum set of C/C++ compiler options,
otherwise the compile or link-edit step may fail:

� LONGNAME (Long name support)
� NOMAR (No margin)
� NOSEQ (No sequence).

You may find the SOURCE and SHOWINC options to be useful for debugging compile errors in your
source code.

You can compile your source files individually if you want, or you can combine the compile and link steps
into one step as in “Step 10. Building Your DCE Application” on page 48.

z/OS DCE uses the Dynamic Link Library support of the z/OS C/C++ compiler. As a result, some new
parameters are required when DCE applications are compiled and link-edited.

In order to access functions and external variables exported by a DLL, a C program is required to be
compiled with the DLL compiler option. It is also required that the definition side-deck that is associated
with the DLL be included when a program is link-edited. For a more complete discussion of the DLL
support provided by z/OS refer to the z/OS Language Environment Programming Guide.

40 DCE Application Development Guide: Introduction and Style

There are three types of DCE applications that are affected by this change:

� Existing DCE applications that do not require any updates or maintenance.
� Existing application that will require updates or maintenance.
� New applications that will be developed on or ported to z/OS.

Existing applications that do not require any updates will continue to run using the new DCE DLL.
Recompiling or relink-editing of existing z/OS DCE application modules is not required.

Existing applications that need updating have a choice of compiling the changed C source with or without
the DLL compiler option. This is provided for compatibility. In either case, when these applications are
link-edited they will have to include the definition side-deck associated with the DCE DLL. The definition
side-deck for the DCE DLL is installed as the HFS resident file /usr/lib/EUVPDLL.x and the PDS resident
file SEUVEXP(EUVPDLL). The PDS may have installation-dependent high-level qualifiers prepended to it.

New DCE applications being developed on or ported to z/OS whose C source parts reference functions or
external variables exported by the DCE DLL should be compiled with the DLL compiler option. When
these applications are link-edited they will have to include the definition side-deck that is associated with
the DCE DLL. The examples in this book reflect the changes to the compiling and link-editing of DCE
applications caused by the modification of the DCE DLL.

In the Shell: You can use any of c89 compiler options to compile your DCE application. For a
complete list of the options, and information on how you set them using the #pragma, #define
preprocessor directives or interactively using the c89 utility, refer to the z/OS UNIX System Services
Command Reference.

For DCE applications, you must specify the directory where the DCE header files specified in the #include
directive in your source are found using the -I option. DCE header files are found in the /usr/include and
/usr/include/dce directories. They are described in the appendix of z/OS DCE Application Development
Reference.

Note: If your DCE source is an HFS file, the object file is created as an HFS file in the working directory.
If your DCE source is in a PDS, the object file is created as a PDS and the object file is placed in
a data set with the qualified name of the source and identified with OBJ as a qualifier.

Compiling Your Client using HFS Files: Following is an example command to compile the C source for
the client portion of your DCE application using HFS files. Note that you can add any c89 compiler
options that you require.

c89 -c -DMVS -D_DCE_THREADS -D_OPEN_SYS -W@,DLL applnm_client.c applnm_cstub.c

Figure 17. Compiling Your Client using HFS Files

Compiling Your Server using HFS Files: Following is an example command to compile the C source
for the server portion of your DCE application using HFS files.

c89 -c -DMVS -D_DCE_THREADS -D_OPEN_SYS -W@,DLL applnm_server.c \
applnm_sstub.c applnm_manager.c

Figure 18. Compiling Your Server using HFS Files

The above commands will create object files in your_dir with the same name as the C source file but with
the c file extension replaced by the o extension.

 Chapter 1. Introduction to DCE Application Programming 41

Compiling Your Client using PDS: Following is an example command to compile the C source for the
client portion of your DCE application using PDS files.

c89 -c -DMVS -D_DCE_THREADS -D_OPEN_SYS -W@,DLL \
"//'USERPRFX.C(APPLNMCL)'" \
"//'USERPRFX.C(APPLNMCS)'"

Figure 19. Compiling Your Client using PDS Files

Compiling Your Server using PDS: Following is an example command to compile the C source for the
server portion of your DCE application using PDS files.

c89 -c -DMVS -D_DCE_THREADS -D_OPEN_SYS -W@,DLL \
"//'USERPRFX.C(APPLNMSR)'" \
"//'USERPRFX.C(APPLNMSS)'" \
"//'USERPRFX.C(APPLNMMR)'"

Figure 20. Compiling Your Server using PDS Files

As you can see there are many combinations of HFS files and PDS files that can be used. You may find
it easier to work with either data sets or HFS files and mix-and-match the files only when necessary.

In TSO/E: You can compile your DCE applications in the TSO/E environment using the CC EXEC
supplied by the z/OS Language Environment product. You may need to customize some of the data sets
required by the CC EXEC for your environment. Refer to the z/OS C/C++ User's Guide for information on
how to use the CC EXEC.

Note: If input parameters to the CC EXEC are all capitalized, C/C++ converts these parameters to
lowercase by default. For DCE applications, you are required to specify certain compiler options in
uppercase. To enable the CC EXEC to preserve the case of your input parameters, you need to
pass at least one parameter to the C/C++ compiler in mixed case.

If the C/C++ SCEERUN library is not in your Link Pack Area (LPA), your Link List (LNKLST), or your
STEPLIB, see your System Programmer to ensure the C/C++ SCEERUN modules are available to your
TSO/E session.

Following is an example of compiling the client stub of your DCE application:

CC APPLNM.C(APPLNMCS)(OBJ(APPLNM.OBJ(APPLNMCS)),
 lo,nomar,noseq,dll,rent,define(_OPEN_SYS,_DCE_THREADS,MVS),
 SEARCH(APPLNM.H,'DCEPFX.SEUVHDR',
 'LNGPFX.SCEEH.H','LNGPFX.SCEEH.SYS.H')

Figure 21. Compiling in the TSO/E environment

You compile the rest of the C source modules for your DCE applications in the TSO/E environment in
similar fashion. Note that the DCE and LE header data sets have an installation-defined high-level
qualifier prepended to them.

42 DCE Application Development Guide: Introduction and Style

In Batch: Figure 22 on page 44 presents sample JCL that you can use to compile your DCE
application. All user modifiable entries are italicized in the sample JCL. The cataloged procedure, EDCC,
is supplied by the z/OS C/C++ product. Consult the z/OS C/C++ User's Guide for more information on
using EDCC. Substitute your user ID wherever you see USERPRFX, and your application name wherever
you see APPLNM in the example.

 Chapter 1. Introduction to DCE Application Programming 43

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO COMPILE THE CLIENT, SERVER, AND STUBS CODE
//"
//"---
//" CUSTOMIZABLE SYMBOLIC PARAMETERS
//"---
//"
//" DCEPFX - FOR DCE HEADER FILES
//" LNGPFX - FOR LE HEADER FILES
//"
//""
//CCCLIENT EXEC EDCC,INFILE='USERPRFX.C(APPLNMCL)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(APPLNMCL),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.APPLNM.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""
//CCCSTUB EXEC EDCC,INFILE='USERPRFX.C(APPLNMCS)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(APPLNMCS),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.APPLNM.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""
//CCSSTUB EXEC EDCC,INFILE='USERPRFX.C(APPLNMSS)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(APPLNMSS),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.APPLNM.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""
//CCSMGRB EXEC EDCC,INFILE='USERPRFX.C(APPLNMMR)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(APPLNMMR),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.APPLNM.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""
//CCSERVER EXEC EDCC,INFILE='USERPRFX.C(APPLNMSR)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(APPLNMSR),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.APPLNM.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""

Figure 22. Sample JCL to Compile Your DCE Application

There are five major compile steps in Figure 22:

44 DCE Application Development Guide: Introduction and Style

Job Step Description

CCCLIENT Compiles the client portion of your application.

CCCSTUB Compiles the client stubs generated by the IDL compiler.

CCSERVER Compiles the server portion of your application.

CCSSTUB Compiles the server stubs generated by the IDL compiler.

CCSMGRB Compiles the manager portion of your application server.

Each one of the above job steps can run on its own, provided the job parameters section and USERLIB
section specifying the application’s header file are completed. The input data set for your application
source code is specified by the INFILE parameter. The output data set for your application’s object code
is specified by OUTFILE parameter. The C/C++ and DCE header files required to compile the DCE
applications are specified on the SYSLIB parameter. You may compile more than one client, server, or
manager at the same time by adding more job steps as required and modifying the input data sets as
appropriate.

Specifying Compile Options: The sample JCL contained in Figure 22 on page 44 includes C/C++
compiler options in using the CPARM= statement. Generally, all compile options can be entered at your
discretion; however, all DCE applications must be compiled as re-entrant to enable the threading used by
the RPC runtime, and, to access APIs in the DCE Dynamic Link Library, the DLL option is recommended.
The LONGNAME option should also used.

Step 9. Link-Editing Your Application

Once you receive a return code 0 from your compile step, you are ready to link your object code with the
DCE RPC runtime library, the C/C++ runtime library, and the TCP/IP runtime library. There are two steps
in the linking process: PLKED (prelink step) and LINK (link step).

The C/C++ prelink step is needed because the code is re-entrant and because LONGNAME support is
required.

Note to Readers

The prelink step for the example code will end with a return code 4 because the C/C++ runtime entry
points, such as printf, strcpy, and so on, are unresolved. You should inspect the prelink output to
ensure that none of your application’s entry points are unresolved.

Refer to “Step 8. Compiling the Client and Server Programs” on page 40 for information about how z/OS
utilizes the Dynamic Link Library support of the z/OS C/C++ compiler.

In the Shell: As in the compile step, use the c89 utility to prelink and link-edit your DCE application
object files to create your DCE program which you can run.

Link-editing Your Client using HFS Files: Following is an example command to link-edit the object
code for the client portion of your DCE application using HFS files:

c89 -o applnm_client applnm_client.o applnm_cstub.o -l dce /usr/lib/EUVPDLL.x

Figure 23. Sample Shell Command to Link Your Client using HFS Files

The above command will create the executable file applnm_client in your current directory.

 Chapter 1. Introduction to DCE Application Programming 45

Link-editing Your Server using HFS Files: Following is an example command to link-edit the object
code for the server portion of your DCE application using HFS files:

c89 -o applnm_server applnm_server.o applnm_sstub.o applnm_manager.o \
-l dce /usr/lib/EUVPDLL.x

Figure 24. Sample Shell Command to Link Your Server using HFS Files

The above command will create the executable file applnm_server in your current directory.

Link-editing Your Client using PDS: Following is an example command to link-edit the object code for
the client portion of your DCE application using PDS files:

c89 -o "//'USERPRFX.LOAD(APPLNMCL)'" \
"//'USERPRFX.OBJ(APPLNMCL)'" \
"//'USERPRFX.OBJ(APPLNMCS)'" \
-l dce /usr/lib/EUVPDLL.x

Figure 25. Sample Shell Command to Link Your Client using PDS

The above command will create the executable file in USERPRFX.LOAD(APPLNMCL).

Link-editing Your Server using PDS: Following is an example command to link-edit the object code for
the server portion of your DCE application using PDSs:

c89 -o "//'USERPRFX.LOAD(APPLNMSR)'" \
"//'USERPRFX.OBJ(APPLNMSR)'" \
"//'USERPRFX.OBJ(APPLNMSS)'" \
"//'USERPRFX.OBJ(APPLNMMR)'" \
-l dce /usr/lib/EUVPDLL.x

Figure 26. Sample Shell Command to Link Your Server using PDS

In TSO/E: You can link-edit your DCE applications in the TSO/E environment using the CXXMOD
EXEC supplied by the z/OS C/C++ program. You may need to customize some of the data sets required
by the CXXMOD EXEC for your environment. Refer to the z/OS Language Environment Programming
Guide for information about the CXXMOD EXEC.

Following is an example of link-editing the client portion of your DCE application:

CXXMOD OBJ(APPLNM.OBJ(APPLNMCL),APPLNM.OBJ(APPLNMCS),'DCEPFX.SEUVEXP(EUVPDLL)')
PLIB('LNGPFX.SCEEOBJ','DCEPFX.SEUVLIB') LIB('LNGPFX.SCEELKED')
LOAD(APPLNM.LOAD(APPLNMCL))

Figure 27. Sample TSO/E Command to Link Your Client

You can link-edit the rest of the server portion of your DCE applications in the TSO/E environment in
similar fashion. Note that the above data sets will have different high level qualifiers at your location.

46 DCE Application Development Guide: Introduction and Style

In Batch: You can use the EDCPL catalogued PROC, available from the z/OS Language Environment
product, to link-edit your client and server. (Shown in Figure 29 on page 48.) Your load module is
placed in the data set specified by ‘USERPRFX.APPLNM.LOAD’. The input data set containing your
object code is specified in the USERLIB statement. The C/C++ and DCE runtime libraries are specified in
the SYSLIB statement. If you create many DCE applications using z/OS DCE, you can customize the
EDCPL proc to specify these two runtime libraries for your location.

The sample code in Figure 28 shows the generic JCL to link the client object code and client stub object
code with the various runtime libraries to create a load module that you can run.

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO LINK THE CLIENT AND CLIENT STUBS OBJECT CODE
//"
//"---
//" CUSTOMIZABLE SYMBOLIC PARAMETERS
//"---
//"
//" LNGPFX - FOR LE OBJECT LIBRARIES
//" DCEPFX - FOR DCE OBJECT LIBRARIES
//"
//"""
//LKCLIENT EXEC EDCPL,OUTFILE='USERPRFX.APPLNM.LOAD,DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.APPLNM.OBJ,DISP=SHR
//SYSLIB DD DSN=&LNGPFX..SCEEOBJ,DISP=SHR
// DD DSN=&DCEPFX..SEUVLIB,DISP=SHR
// DD DSN=&DCEPFX..SEUVEXP,DISP=SHR
//PLKED.SYSIN DD "
 INCLUDE USERLIB(APPLNMCS)
 INCLUDE USERLIB(APPLNMCL)
 INCLUDE SYSLIB(EUVPDLL)
/"
//LKED.SYSIN DD "
 NAME APPLNMCL(R)
/"

Figure 28. Sample JCL to Link Your DCE Client

The sample code in Figure 29 on page 48 shows the generic JCL to link the server code, manager code,
and server stub code to create a load module that you can run.

 Chapter 1. Introduction to DCE Application Programming 47

 //JOBNAME JOB (ACCOUNT),...your_job_parameters
 //"""
 //"
 //" JCL TO LINK THE SERVER, MANAGER AND SERVER STUBS OBJECT CODE
 //"
 //"""
 //"
 //"---
 //" CUSTOMIZABLE SYMBOLIC PARAMETERS
 //"---
 //"
 //" LNGPFX - FOR LE OBJECT LIBRARIES
 //" DCEPFX - FOR DCE OBJECT LIBRARIES
 //"
 //"""
 //LKSERVER EXEC EDCPL,OUTFILE='USERPRFX.APPLNM.LOAD,DISP=SHR',
 // LNGPFX='CEE',DCEPFX='DCE'
 //USERLIB DD DSN=USERPRFX.APPLNM.OBJ,DISP=SHR
 //SYSLIB DD DSN=&LNGPFX..SCEEOBJ,DISP=SHR
 // DD DSN=&DCEPFX..SEUVLIB,DISP=SHR
 // DD DSN=&DCEPFX..SEUVEXP,DISP=SHR
 //PLKED.SYSIN DD "
 INCLUDE USERLIB(APPLNMSR)
 INCLUDE USERLIB(APPLNMMR)
 INCLUDE USERLIB(APPLNMSS)
 INCLUDE SYSLIB(EUVPDLL)
 /"
 //LKED.SYSIN DD "
 NAME APPLNMSR(R)
 /"

Figure 29. Sample JCL to Link Your DCE Server

Step 10. Building Your DCE Application

You can combine the compile and link-edit steps to build your DCE applications in the Shell and batch
environments.

In the Shell: Your client application is built from the following source files:

� The user-written applnm_client.c client module
� The IDL compiler generated applnm_cstub.c module
� Libraries for the RPC runtime, for IDL stub support, and for the Threads facility. These libraries are

included in libdce and the definition side-deck associated with the DCE DLL that you use to link your
application.

Your server application is built from the following source files:

� The user-written applnm_server.c client module
� The IDL compiler generated applnm_sstub.c module
� Libraries for the RPC runtime, for IDL stub support, and for the Threads facility. These libraries are

included in libdce and the definition side-deck associated with the DCE DLL that you use to link your
application.

Use the make facility with a makefile, such as the one presented in Figure 30 on page 49, to build you
client and server application programs. This makefile builds your application in one step by running the
IDL compiler and the c89 compiler and link-edits your application with the DCE runtime libraries. If you
make any changes to one of your DCE application source files, this makefile only builds the application,

48 DCE Application Development Guide: Introduction and Style

that is, the client or server, that is affected by that change. Any intermediate source and object files used
to create the executable file are removed. This example uses only HFS files.

IF = applnm

IDL = /bin/idl
IDL_FLAGS = -no_cpp -keep c_source
CFLAGS = -DMVS -D_DCE_THREADS -D_OPEN_SYS -W@,DLL
LIBS = -l dce /usr/lib/EUVPDLL.x

FROMIDL = $(IF).h $(IF)_cstub.c $(IF)_sstub.c
COBJ = $(IF)_client.o $(IF)_cstub.o
SOBJ = $(IF)_server.o $(IF)_sstub.o $(IF)_manager.o

default: $(IF)_client $(IF)_server
$(IF)_client: $(COBJ)
 c89 -o $(if)_client $(COBJ) $(LIBS)
$(IF)_server: $(SOBJ)
 c89 -o $(if)_server $(SOBJ) $(LIBS)
client.o server.o manager.o: $(IF).h

$(COBJ): $(IF).h
$(SOBJ): $(IF).h

$(FROMIDL): $(IDL) $(IF).idl
 $(IDL) $(IF).idl $(IDL_FLAGS)

clean:
 rm -f $(FROMIDL) ".o

Figure 30. Sample Makefile to Build Your DCE Application

In the above makefile, the following substitution variables enclosed in parentheses and preceded by $ are
used:

IF Your application name designated by applnm
IDL Directory where the IDL compiler resides on your system
IDL_FLAGS IDL compiler options
CFLAGS c89 compiler options
LIBS Name of the DCE runtime library and the definition side-deck associated with the DCE DLL
FROMIDL Output files from the IDL compiler
COBJ The client application object files
SOBJ The server application object files.

You can store this makefile as a text file and assign any name you want to it. Assuming you call your
application’s makefile, applnm.make, and it is stored in your current working directory, you can build your
application by running the make facility as follows:

make -f applnm.make

To remove any intermediate files such as the stubs and object files created during the build, use the
following command:

make -f applnm.make clean

 Chapter 1. Introduction to DCE Application Programming 49

In Batch: You can combine the batch compile and link JCL presented in “Step 8. Compiling the Client
and Server Programs” on page 40 and “Step 9. Link-Editing Your Application” on page 45 into a single
JCL that will compile and link your DCE application.

Running Your DCE Application

After you have successfully built your DCE application, you can run it by performing the following steps:

1. Starting your server
2. Starting your client
3. Checking your application
4. Stopping your application.
5. Setting your environment

Step 1. Starting Your Server

Once you have successfully linked your application (with a return code 0 for the link step), you can start
your DCE application. Before you start your application, ensure that the DCEKERN address space is
running on your system by using the Display Active option of the SDSF panel. Always start the server
first to avoid the client application from terminating because the server is not available. All DCE
applications are POSIX programs by design. Thus, when you run them in TSO/E or batch environments,
you need to specify certain runtime options, such as POSIX(ON). These options are not required when you
run your application in the Shell.

You must also specify the runtime option STACK(12000) when running your application. The stack
storage default per thread is 512K, which severely limits the number of threads.

In the Shell: Figure 31 shows the sample command for running your server application in background
mode, which is typically how you would run your server application in the shell. Run your server
applications in background mode so that you can gain control and proceed with other tasks while your
server is listening.

applnm_server <server_startup_parameters> &

Figure 31. Example Command for Running Your DCE Server in Background Mode

In TSO/E: Usually you do not start DCE server applications in the TSO/E environment because you
will not be able to gain control while your server application is running.

For a non-server DCE application, you can start it in TSO/E environment using the TSO/E CALL statement
as follows:

CALL 'USERPRFX.LOAD(APPLNM)' 'POSIX(ON),STACK(12@@@)/ other_parameters' ASIS

In Batch: Figure 32 on page 51 shows the sample JCL for running your server application.

50 DCE Application Development Guide: Introduction and Style

JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO START UP THE SERVER
//"
//"""
//STEPNAME EXEC PGM=SERVER_NAME,PARM='POSIX(ON)/ <server_startup_parameters>'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//CEEDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.APPLNM.LOAD,DISP=SHR

Figure 32. Example JCL for Running Your DCE Server

You run your program with the standard EXEC PGM statement. Pass parameters to your server application
using the PARM='server_startup_parms' statement. Note that for starting DCE applications in batch, you
must specify the POSIX(ON) runtime parameter. Consult your DCE administrator about using special job
classes for testing long-running DCE server applications, before you run your DCE server programs.

Step 2. Starting Your Client

Once you have established that your server is running correctly, you can start your client program.

In the Shell: Figure 33 shows the sample command for running your client program.

applnm_client <client_startup_parameters>

Figure 33. Example Command for Running Your DCE Client

In TSO/E: You can start up a DCE client application using the TSO/E CALL statement as follows:

CALL 'USERPRFX.LOAD(APPLNM)' 'POSIX(ON),STACK(12@@@)/ other_parameters' ASIS

In Batch: Figure 34 shows the sample JCL for running your client program:

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO START UP THE CLIENT
//"
//"""
//STEPNAME EXEC PGM=CLIENT_NAME,PARM='POSIX(ON)/ <client_startup_parameters>'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//CEEDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.APPLNM.LOAD,DISP=SHR

Figure 34. Example JCL for Running Your Client

 Chapter 1. Introduction to DCE Application Programming 51

Step 3. Checking Your Application

In The Shell: Once you have started your client and server, you can check their status by entering
the process status (ps) command. For example, to find out if your server process is running, enter the
following command:

ps pid

where pid is the process ID of your server program job.

For additional information on using the ps command, consult z/OS UNIX System Services User's Guide.

In TSO/E and Batch: Once you have started your client and server, you can check their status by
looking at the SDSF panel in ISPF. On most z/OS systems, you can get to the SDSF panel by entering
option ‘S’ on the ISPF command line. Some applications run indefinitely (for example, a server that is
listening for a client call), depending on how you design your application. If your job is active, look in the
‘Display active users of the system’ option (select DA in SDSF) to view the output of your application.

If your job is terminated, either because it is programmed to terminate or it stops unexpectedly, look in the
‘Display jobs in the JES2 held output queue’ (option H in SDSF) to view the output.

Step 4. Stopping Your Application

Normal Stopping: The recommended way to stop server applications is to code an external stop
program to terminate your server applications using DCE APIs like these:

 � rpc_ep_unregister()
 � rpc_ns_binding_unexport()
 � rpc_mgmt_stop_server_listening()

Client programs are normally coded to terminate on their own.

Abnormal Stopping: You can stop your server program from the Shell and TSO/E environments as
follows:

From the Shell: To stop your server program or your currently running process, you can send it a quit
signal by entering <CTRL-C> from your keyboard, or by using the ps and kill commands.

The ps command lists all your processes that are running in the Shell. Note the process identifier (PID)
corresponding to your server program. When you find the PID corresponding to the program you want to
shut down, issue the kill command as follows:

 kill pid

Client programs are normally coded to terminate on their own.

From TSO/E: You can use either the <PA1> key, the CANCEL command, or the STOP command to
terminate your server application. Note that none of these methods run the TRY/CATCH routines in your
application.

You can run the kill command from the shell environment, to stop a server application or process running
in TSO/E provided you know the PID number.

52 DCE Application Development Guide: Introduction and Style

Step 5. Setting Environment Variables

You can customize the runtime environment for your DCE application by setting certain environment
variables. As with OSF DCE, z/OS DCE accepts configuration parameters using environment variables.
In many cases, your applications do not need to set any environment variables; instead, they use the
defaults set up on your system.

Consider the following environment variables for your DCE applications:

 � LANG

specifies the locale your program will run in (and therefore the code page it will use). This can either
be specified in the shell with the export command:

export LANG=Fr_CA.IBM-@37

or in the envar file:

LANG=Fr_CA.IBM-@37

 � NLSPATH

Specifies the directory path z/OS DCE searches for the message catalogs.

Note: The dce_error_inq_text() API is influenced by the setting of NLSPATH.

Normally, this variable is set by the DCE administrator as a default for your system. If not, you should
set this variable to /usr/lib/nls/msg/%L/%N before you run your z/OS DCE applications. You should
also set the LANG environment variable to your locale, since its value indirectly affects the value of
NLSPATH (see explanation on page 38).

 � RPC_DEFAULT_ENTRY

Specifies the default entry in the name service database that the RPC NSI import and lookup routines
use as a starting point to search, for binding information for a compatible server. An application that
uses a default entry name must define this environment variable. The DCE runtime does not provide
a default.

 � RPC_DEFAULT_ENTRY_SYNTAX

Specifies the syntax of the name provided in the RPC_DEFAULT_ENTRY environment variable. In
addition, it provides the syntax for those RPC NSI routines that allow a default value for the name
syntax parameter. If you do not define RPC_DEFAULT_ENTRY_SYNTAX, the DCE runtime uses the
rpc_c_ns_syntax_dce name syntax. It can be set to one of the following values:

0 Use the default value
1 Unknown (unsupported)
2 Use DECdns syntax (unsupported)
3 Use DCE syntax (the default value)
4 Use ISO OSI X.500 syntax (unsupported)
5 Use DOD Internet Domain Name Server (unsupported)
6 Use a UUID string (unsupported)

 � _EUV_SVC_API_DUMPS

Specifies if a CEEDUMP occurs if invalid parameters are present in any DCE API in your program. It
can be one of the following values:

1 Dumping is enabled
0 Dumping is disabled.

For information on reading a CEEDUMP, refer to z/OS Language Environment Programming Guide.

 � _EUV_RPC_DYNAMIC_POOL

 Chapter 1. Introduction to DCE Application Programming 53

Specifies whether a dynamic pool of executor threads is created. It can be one of the following
values:

1 Dynamic pool is used (the default on z/OS DCE)
0 Static pool is used (based on the OSF model).

 � _EUV_EXC_SW_DUMPS

Specifies if a dump is taken during an exception raised by software. It can be one of the following
values:

0 No dump is taken for an exception.
1 A dump is only taken for an uncaught exception (if no CATCH or CATCH_ALL clause exists).

This is the default value.
2 A dump is taken in all cases except for an explicit catch of an exception (if no CATCH clause

exists).

 � _EUV_EXC_ABEND_DUMPS

Specifies if a dump is taken during an ABEND exception. It can be one of the following values:

0 No dump is taken for an exception.
1 A dump is only taken for an uncaught exception (if no CATCH or CATCH_ALL clause exists).
2 A dump is taken in all cases except for an explicit catch of an exception (if no CATCH clause

exists). This is the default value.

 � _EUV_RPC_COMM_TIMEOUT

Used to override the communication timeout default value. The timeout value specifies the relative
amount of time a client spends attempting to communicate with a server. The timeout value can be
any integer from 0 (zero) to 10, which is the same range of integers accepted by the
rpc_mgmt_set_com_timeout() API. These integers represent a relative amount of time to spend
establishing a client-server relationship. The values are:

0 Attempts to communicate for 1 second.
1 Attempts to communicate for 2 seconds.
2 Attempts to communicate for 4 seconds.
3 Attempts to communicate for 8 seconds.
4 Attempts to communicate for 15 seconds.
5 Attempts to communicate for 30 seconds.
6 Attempts to communicate for 60 seconds.
7 Attempts to communicate for 120 seconds.
8 Attempts to communicate for 240 seconds.
9 Attempts to communicate for 480 seconds.
10 Attempts to communicate infinitely.

For further information on the above DCE environment variables, refer to z/OS DCE Application
Development Reference. You can find information about other DCE environment variables such as
KRB5CCNAME, BIND_PE_SITE, TZ and _EUV_SVC_MSG_LOGGING that are normally set as defaults
on your system by the DCE Administrator (see z/OS DCE Administration Guide). There are also
additional environment z/OS DCE variables that are used for serviceability and debugging purposes.

54 DCE Application Development Guide: Introduction and Style

In the Shell: You can set environment variables in the shell two ways using:

� The export command
� The .profile file.

Using the export command: Set an environment variable for your current shell session by running the
export command as follows:

export var1=x var2=y...

For example, to set the RPC_DEFAULT_ENTRY to my_server you would use the following Shell
command:

export RPC_DEFAULT_ENTRY=my_server

This environment variable is set until the current Shell session ends or until you reset the variable. To
verify that the environment variable has been set, use the echo command with the $ preceding the target
environment variable. In the above example, the command would be:

echo $RPC_DEFAULT_ENTRY

Setting Your .profile file: You can also set your DCE environment variables in your .profile file
contained in your home directory. The environment variables in your .profile get set when you enter the
Shell session, so you can consider them to be more permanent than the other methods described above.
If you change your environment variables in the .profile file, you can issue the . .profile command for
them to come into effect; otherwise, they are set the next time you enter the Shell. A .profile file contains
the export command as follows:

�
�
�
export var1=x
export var2=y
export var3=z
�
�
�

The file format is a sequential list of environment strings, one per line (or record) unless a string straddles
multiple lines because of its length. No blank lines are allowed. As in the UNIX operating system,
environment strings must have the following format:

VARIABLE=the environment variable definition

Variable names are case-sensitive, and no space is allowed between the variable name and the variable
definition. If a definition is too long for one line, it can be extended with a backslash (‘\’). For example:

ANOTHER_VARIABLE=this variable definition will be far too long to \
fit on only one line.

All characters preceding the backslash character (including spaces) are considered part of the definition.
Trailing spaces after a definition are not included.

Figure 35 on page 56 shows an example envar file. For more information on using DCE environment
variables, refer to z/OS DCE Administration Guide.

 Chapter 1. Introduction to DCE Application Programming 55

TZ=Canada/Eastern
RPC_DEFAULT_ENTRY_SYNTAX=3
RPC_DEFAULT_ENTRY=entry_name
LANG=Fr_CA.IBM-@37
NLSPATH=/usr/lib/nls/msg/%L/%N

Figure 35. Example Environment Variables

The .profile file is typically used to customize your Shell environment using environment variables.

In TSO/E: You can specify environment variables as a run time option on the CALL statement to run
your program using the following syntax:

ENVAR('var1=x' 'var2=y 'var3=z'...)

If you want to set the RPC_DEFAULT_ENTRY environment variable to my_server, you would call your
program from a TSO/E command line as follows:
CALL 'USERPRFX.LOAD(APPLNM)''POSIX(ON),STACK(12@@@),ENVAR(''RPC_DEFAULT_ENTRY=my_server'')/other_parameters' ASIS

Using the envar file An envar file typically looks like this:

var1=x
var2=y
var3=z
�
�
�

If you do not explicitly declare environment variables through the export command (from the command line
or through the .profile file) in the shell, z/OS DCE looks for them in the default environment variable
envar file in your home directory. If you want to create this file in a directory other than your home
directory, set the value of the _EUV_ENVAR_FILE environment variable to a specific path name, as
follows:

ENVAR(''_EUV_ENVAR_FILE=filename'')

In Batch: You can specify environment variables using the ENVAR runtime option on the EXEC
statement in the JCL that runs your application. You can either specify them individually, using
ENVAR('var1=x', 'var2=y', 'var3=z'...) syntax, or point to the name of a an envar file, as shown below:

JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO START UP THE SERVER
//"
//"""
//STEPNAME EXEC PGM=SERVER_NAME,
// PARM='POSIX(ON),ENVAR(''_EUV_ENVAR_FILE=filename'')/ <options>'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//CEEDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.APPLNM.LOAD,DISP=SHR

Figure 36. Specifying Environment Variables in Batch

Environment variables set in an envar file can be overridden by those specified from the shell using the
export command, or by those specified using the ENVAR runtime option from batch or TSO.

56 DCE Application Development Guide: Introduction and Style

For more information on setting environment variables, refer to z/OS DCE Administration Guide.

Language Environment Runtime Options Considerations

z/OS DCE is supported by the Language Environment runtime environment. When executing a Language
Environment application, a number of runtime options can be specified that affect the way your application
runs. You can specify these runtime options in a number of ways. See z/OS Language Environment
Programming Reference, SA22-7562, for details on the various options and how they are specified.

Caution: Never set the Language Environment runtime option TRAP(OFF) with DCE applications except
at the direction of IBM service personnel.

For Application Storage: Some of these runtime options should be used with all z/OS DCE client
and server applications since they affect the amount of storage available for the z/OS UNIX and DCE
Threads packages. These options are:

LIBSTACK(4K,4K,FREE)
STACK(4K,4K,ANY,FREE)

In addition, if your application uses large numbers of DCE threads (that is, greater than 150), you should
also specify:

STORAGE(,,,4K)

The above options affect storage use only. If necessary, you should also adjust the HEAP runtime option
to meet your application’s needs for heap storage as described below. You should also run your
applications with ALL31(ON).

Long running servers may sometimes cause storage exhaustion due to storage fragmentation. If your
server tends to use excessive storage and you have ruled out any problems with freeing memory, you
may have a fragmentation problem.

To alleviate a fragmentation problem, use a large initial heap allocation. For DCE applications, change the
Language Environment default of 64K for initial heap size and heap increments to 1024K and 4K
respectively as follows:

HEAP(1@24K, 4K, ...)

If your applications run out of storage for threads (that is, you receive a message that pthread_create()
failed for storage reasons) and you have implemented the above runtime options, you may need to set the
below heap storage as follows:

BELOWHEAP(4@96K,256K,ANY,FREE)

For Application Debugging: There are two runtime options that relate to debugging activities:

 � TERMTHDACT(DUMP)

Normally, this runtime option should be set for your application so that in the event of failure, you
receive a Language Environment CEEDUMP as well as a traceback. Refer to z/OS Language
Environment Debugging Guide, GA22-7560. for more information.

 � TRACE(ON,64K,NODUMP,LE=1)

Set this runtime option to obtain a trace table in the Language Environment CEEDUMP. This trace
table is referred to as the LE trace. It contains information about runtime library calls to Language
Environment, C/C++, sockets, and the z/OS DCE runtime library. You may increase the trace table
size by increasing the value of the second parameter, above, or you may request that the trace table

 Chapter 1. Introduction to DCE Application Programming 57

is always dumped when the application ends by specifying DUMP instead of NODUMP, above. Refer
to z/OS Language Environment Debugging Guide for a detailed description of this option.

Other Runtime Options: Ensure that the process thread limits are set by setting the
MAXTHREADS and MAXTHREADTASKS parameters to a value of 500 or greater. These parameters are
contained in the BPXPRMxx parmlib member of the SYS1.PARMLIB data set on your system. The
parameters contained in BPXPRMxx control the z/OS UNIX environment, the hierarchical file system, and
the sockets file systems. The system uses these parameter values to initialize the kernel.

Note on Interlanguage Calls

A C/C++ program can communicate with a PL/I program only on the initial thread. Thus, a client program
can call a PL/I subroutine on the initial thread as described in z/OS Language Environment Programming
Guide, SA22-7561. Also, a server application can call PL/I and COBOL subroutines before invoking the
rpc_server_listen() call in the initial thread.

In the z/OS DCE architecture, the server manager routines always run in created threads. Note that these
threads are not what Language Environment refers to as initial threads. Refer to z/OS Language
Environment Programming Guide for information on the rules, restrictions, and limitations on POSIX
conformant C/C++ applications that include z/OS DCE applications.

Creating a Sample Application: GREET

In this section, you create a simple application using the application development steps introduced in
“High-Level Application Development Steps” on page 29. The application steps are repeated with specific
annotations enabling you to create the Greet application.

The Greet application is an example of a DCE RPC based application. None of the other DCE services
such as Naming, Security, or DTS are used in this application. For simplicity, the server and client
programs are located in the same machine.

The client side of the application sends a greeting to the server side of the application. The server prints
the client’s greeting and sends a return greeting to the client. The client prints the server’s reply and
stops. The server runs indefinitely listening for client RPC calls.

Fast Path to Running Greet

If you prefer to bypass steps 2 through 7 in the development process and not develop and enter the code,
it is provided for you. This includes the necessary IDL and C source code, the Makefile to build the
application, and the README for additional information on the application. To get the Greet application
up and running quickly:

1. To build and run the Greet application in the Shell, create a directory and copy the Greet application
source files to that directory. If you want to build and run Greet in TSO/E or batch, allocate the
necessary data sets (as in “1. Creating Files for the Greet Application” on page 59 below), and use
the TSO/E OGET command to copy the Greet source files to these application data sets.

2. Proceed to “8. Building the Greet Client and Server Programs” on page 69 and continue with the
process to compile, link-edit, and run Greet.

You can find the application source code for the Greet example in the /usr/lpp/dce/examples/greet
directory. The source files supplied with z/OS DCE for this example are as follows:

� greet.idl (the IDL file)

58 DCE Application Development Guide: Introduction and Style

� greet_client.c (the client code)
� greet_server.c (the server code)
� greet_manager.c (the manager code)

 � Makefile
 � README.

If you cannot find the Greet example source files in the above directory, consult your system programmer
to find where they are located in your system.

To gain experience using some of the z/OS DCE tools such as the IDL compiler, proceed with the
following steps:

1. Creating Files for the Greet Application

In the Shell: Create a directory where you want to build and run the Greet application. You do not
have to allocate any HFS files in the Shell for the Greet application. The HFS files are created for you
when you first edit them, using the TSO/E OEDIT command. To avoid having to key in the source code,
you can copy the Greet source files from the /usr/lpp/dce/examples/greet directory to your directory.

In ISPF:: To allocate the required data sets for Greet, enter:

 idlalloc

A menu is presented by IDLALLOC. In the DSN PREFIX area, fill in USERPFX.GREET. For more
information, see page 33 and Figure 2 on page 34.

IDLALLOC will create the following partitioned data sets automatically.

 � USERPRFX.GREET.ACF
 � USERPRFX.GREET.C
 � USERPRFX.GREET.H
 � USERPRFX.GREET.IDL
 � USERPRFX.GREET.OBJ

After you have allocated the necessary data sets, copy the source files to the appropriate data set using
the TSO/E OGET command. The Greet application does not require attribute configuration parameters
and thus the ACF data set is not required. You can list these data sets to verify they have been created
by using the ‘Data Set List Utility’ in ISPF (option 3.4).

2. Generating a UUID and an IDL File

Next, you must create a UUID to uniquely label the Greet interface, and create a template for the Greet
application IDL file.

In the Shell: Use the example command in Figure 37 to generate a UUID and create a template for
the Greet IDL file:

uuidgen -i -o greet.idl

Figure 37. Shell Command to run the UUID Generator for Greet

In the above example, the uuidgen command is run with the -i option, which specifies that a skeletal
interface definition file is to be generated that includes the UUID. The -o option redirects the output from

 Chapter 1. Introduction to DCE Application Programming 59

your screen to the greet.idl file in your current directory. For a complete description of the input
parameters for the UUID generator, see z/OS DCE Application Development Reference.

In TSO/E: You can also generate a UUID in foreground mode by entering the following TSO/E
command:

uuidgen -i -o greet "//'USERPRFX.GREET.IDL'"

In Batch: Use the example JCL contained in Figure 38 to generate a UUID for the Greet application.
In addition to generating a UUID for your application, running this JCL creates a template for your
application’s IDL file.

//JOBNAME JOB (ACCOUNT)...your_job_parameters
//""
//" Execute UUIDGEN using JCL "
//""
//UUIDGEN EXEC UUIDGEN,
// PARMS='-i -o "//GREET.IDL(GREET)"'

Figure 38. Generating a UUID for the Greet Application in Batch

The contents of the Greet IDL file generated in any of the above environments is as shown in Figure 39.

[
uuid(2@818313-4143-19ea-a6e@-@@@@dce12345),
version(1.@)
]
interface INTERFACENAME
{

}

Figure 39. Example of the Greet Application IDL File

Note: To avoid any potential conflicts with other instances of the same Greet example and ensure that
you are running a unique instance, you should generate your own interface UUID using the UUID
Generator and replace the interface UUID in the IBM-supplied Greet IDL file with it.

3. Naming the Greet Interface

You can edit the Greet IDL file member using your favorite MVS/ESA or ISPF editor. Replace the string
INTERFACENAME with ‘greet’, the interface name for Greet. The convention is to name the interface the
same as the IDL file. The content of Greet IDL file should be similar to the following:

[
uuid(2@818313-4143-19ea-a6e@-@@@@dce12345),
version(1.@)
]
interface greet
{

}

Figure 40. Naming the Greet Interface

60 DCE Application Development Guide: Introduction and Style

4. Defining the Interface Operations

Within the braces, define the operation comprising the Greet interface. In this example, there is only one
operation called greet_rpc. Figure 41 shows the contents of the Greet IDL file.

[
uuid(2@818313-4143-19ea-a6e@-@@@@dce12345),
version(1.@)
]

interface greet
{

const short int STR_SZ=128;
void greet_rpc (�1�

 [in] handle_t h, �2�
 [in] char client_greeting[STR_SZ], �3�

[out] char server_reply[STR_SZ]
);
}

Figure 41. The Greet Application Interface Operations

The GREET interface operations are defined as follows:

�1� The first line defines the name of the operation, greet_rpc, and indicates by the void declaration that
it has no meaningful return value.

�2� In the next line, handle_t h is a declaration defining h as a primitive binding handle. It is meaningful
to the RPC runtime library.

�3� The next two lines specify the client_greeting and server_reply. arguments to the operation. The
first is a string that is passed from the client to the server — denoted by “[in]”; the second is a string
returned from the server back to the client — denoted by “[out].”

5. Compiling the Greet Interface with the IDL Compiler

After you have written the Greet interface definition, you can use one of the following methods to compile
it. In the following examples, you run the IDL compiler with the verbose option (- v), which means that
the IDL compiler outputs informational messages when compiling the IDL file. The -no_cpp directive
specifies that the C preprocessor is not run. In addition, the -keep c_source option in the examples
retains the output files (the stubs) as C source modules. The default for the IDL compiler, if the -keep
c_source option is not specified, is to invoke the compiler and retain the object modules only, for the
output files.

The IDL compiler can also produce stubs in object format by invoking the C/C++ compiler. The .c portion
of the output file is replaced by .o.

The IDL compiler offers many options that enable you to choose the C/C++ compiler or preprocessor
commands that are invoked, which directories are searched for imported files, which of the possible output
files are generated, and how the output files are named. When you compile the definition of a remote
interface, you must ensure that the system IDL directory is among those that the IDL compiler searches
when it searches for imported files, because any remote interface implicitly imports nbase.idl.

 Chapter 1. Introduction to DCE Application Programming 61

In the Shell: Use the sample command shown in Figure 42 to compile the Greet IDL file, producing
the header and stub files:

idl greet.idl -no_cpp -v -keep c_source

Figure 42. Sample Command to Invoke the IDL Compiler in the Shell

The IDL compiler creates three output files for Greet the Greet application. These files are compiled along
with the Greet application source code. The files are:

� greet.h (The Greet header file)
� greet_cstub.c (The Greet client stub)
� greet_sstub.c (The Greet server stub)

The Greet header file contains the definitions and declarations derived from the input greet.idl file that are
for general use in the development source code. Its contents are shown in Figure 45 on page 63.

In TSO/E: Use the sample CLIST command, IDL, shown in Figure 43, to compile the Greet IDL file
and produce the files listed above. Note that IDL handles PDS only.

idl GREET -no_cpp -v -keep c_source -userpfx USERPRFX.GREET

Figure 43. Sample TSO/E Command to Run the IDL Compiler

In Batch: In batch, use the sample JCL presented in Figure 44:

 //JOBNAME JOB (ACCOUNT)...your_job_parameters
 //""
//" RUN THE IDL Compiler "

 //""
 //IDLCOMP EXEC IDL,USERPFX='USERPRFX.GREET',
// PARM='greet -no_cpp -v -keep c_source'

Figure 44. Sample JCL to Run the IDL Compiler

For the TSO/E and batch environments, the IDL compiler creates three files with associated members for
Greet. These data sets are compiled along with the Greet application source code. The data sets are:

header USERPRFX.H(GREET)
client stub USERPRFX.C(GREETCS)
server stub USERPRFX.C(GREETSS)

USERPRFX.H(GREET) contains the definitions and declarations derived from the input
USERPRFX.IDL(GREET) data set that are for general use in the development source code. Its contents
are shown in Figure 45 on page 63:

62 DCE Application Development Guide: Introduction and Style

/" Generated by IDL compiler version OSF DCE T1.1.@-@3 "/
#ifndef greet_v1_@_included
#define greet_v1_@_included
#ifndef IDLBASE_H
#include <dce/idlbase.h>
#endif
#include <dce/dcerpcmsg.h>
#include <dce/rpc.h>

#ifdef __cplusplus
extern "C" {

#endif

#ifndef nbase_v@_@_included
#include "dce/nbase.h"
#endif
#define STR_SZ (128)
extern void greet_rpc(
#ifdef IDL_PROTOTYPES

/" [in] "/ handle_t h,
/" [in] "/ idl_char client_greeting[128],
/" [out] "/ idl_char server_reply[128]

#endif
);
typedef struct greet_v1_@_epv_t {
void ("greet_rpc)(
#ifdef IDL_PROTOTYPES

/" [in] "/ handle_t h,
/" [in] "/ idl_char client_greeting[128],
/" [out] "/ idl_char server_reply[128]

#endif
);
} greet_v1_@_epv_t;
extern rpc_if_handle_t greet_v1_@_c_ifspec;
extern rpc_if_handle_t greet_v1_@_s_ifspec;

#ifdef __cplusplus
 }
#endif

#endif

Figure 45. The Greet Application Header File

The stubs, one for your server and one for your client, contain the runtime code for marshalling and
unmarshalling data, message handling, and other details of network communications management.

You can browse the Greet client and server stub files to see their contents. They are not listed here
because they are quite lengthy. You do not make any changes to the stub code.

6. Writing the Greet Server and Manager Code

In the Shell, the C code you write for the Greet server is contained in the HFS file greet_server.c. The
Greet manager, which forms part of the server side of the Greet application, is contained in
greet_manager.c.

In the TSO/E or batch environments, the C code you write for the Greet server is contained in the
USERPRFX.GREET.C data set with the following members:

 � MANAGER

 Chapter 1. Introduction to DCE Application Programming 63

 � SERVER

The Greet manager, which forms part of the server side of the Greet application, contains the
implementation of the greet_rpc operation. It contains the C source code shown in Figure 46:

#include <stdio.h>
#include "greet.h"

void greet_rpc(handle_t h,
 char "client_greeting,
 char "server_reply)
{

printf("The client says: %s\n", client_greeting);
 fflush(stdout);

strncpy(server_reply, "Hi client !", STR_SZ);
}

Figure 46. Greet Manager Source Code

The Greet server contains the main portion of the Greet application. It registers its interface with the RPC
runtime, and then listens for service requests from Greet clients. The server goes through the following
steps. The numbers shown in blocks refer to Figure 47 on page 65.

�1� The server includes all the necessary header files. Referring to Figure 47 on page 65, notice the
file <dce/dce_error.h> has been included. This header file contains a defined constant,
dce_c_error_string_len, a typedef, dce_error_string_t and a prototype of the function
dce_error_inq_text(). Notice also that the <dce/exc_handling.h> file has been included. It is
required so the server can handle any unexpected interrupts while it is listening for client requests.
With this exception handling, the server application can be terminated gracefully. That is, actions
such as unregistering its interface from the endpoint map can be taken prior to terminating the
server application.

In the main routine, the server:

�2� Makes all the necessary variable declarations.

�3� Sets the locale for this application to the default locale for your system.

�4� Checks to ensure that only one argument is received at start up, and prints an error message if
more or fewer arguments are received.

�5� The server then calls the rpc_server_use_all_protseqs() function to register all protocol
sequences that are supported by the operating system and the DCE runtime, with the DCE runtime.
Also, with this function call, the server obtains an endpoint for each supported protocol from the
runtime on which it listens for client requests.

�6� The server calls the rpc_server_register_if() function to register its interface with the RPC runtime
by supplying its interface specification.

�7� The server calls the rpc_server_inq_bindings() function to obtain a vector of binding handles that
can be used to register the server’s endpoint. The server then obtains, prints, and frees a string
binding. The binding is printed in this example so that later you can provide it as a parameter
when you start your client. This enables your client to find the server (through this binding). This is
done only to simplify the example; normally, a binding would be obtained from the name service.

�8� To begin listening for RPC requests, the server calls rpc_server_listen() function. This call is
placed within the TRY of a TRY, CATCH_ALL, ENDTRY sequence, so that if the server receives an
exception while it is listening, it prints out a status message before it exits. For more information on
TRY and CATCH sequences, see Chapter 4, “Threads” on page 149.

64 DCE Application Development Guide: Introduction and Style

The source code for the Greet server is shown in Figure 47 on page 65. To obtain more information on
the syntax and use of the RPC API calls presented in this example, refer to the appropriate section of
z/OS DCE Application Development Reference for the particular API call.

#pragma runopts(stack(12K,4K,ANY,KEEP))

 #include <stdio.h> ──┐
 #include <locale.h> │
 #include <dce/dce_error.h> │ �1�
 #include <dce/exc_handling.h> │
 #include "greet.h" ──┘

 #define MAX_CONCURRENT_CALLS 5

 /" In the first part of the main function, the server calls
the rpc_server_use_all_protseqs to use all protocol
sequences that are supported on its host both by the
runtime library and the operating system. "/

 int main (int argc, char "argv[])
 {
 rpc_binding_vector_p_t bvec; ──┐
 unsigned long st; │
 int error_inq_st; │ �2�
 dce_error_string_t error_text; │
 idl_boolean validfamily; │
 idl_char "string_binding; │
 int i: │
 FILE "bindingfile; ──┘

 setlocale(LC_ALL, ""); �3�

if (argc != 1) { ──┐
fprintf (stderr, "Usage: %s\n",argv[@]); │

 fflush (stderr); │ �4�
 exit(1); │
 } ──┘

/" Calling rpc_server_use_all_protseqs to obtain an endpoint
for each protocol sequence supported by the RPC runtime and
the operating system "/

 rpc_server_use_all_protseqs(MAX_CONCURRENT_CALLS, &st); ──┐
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot register protocol seqs - %s\n", error_text); │ �5�

 fflush(stderr); │
 exit(1); │
 } ──┘

/" Calling rpc_server_register_if to register its interface with
the RPC runtime by supplying its interface specifier "/

rpc_server_register_if(greet_v1_@_s_ifspec, NULL, NULL, &st); ──┐
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │ �6�
fprintf(stderr, "Cannot register interface - %s\n", error_text); │

 fflush(stderr); │
 exit(1); │
 } ──┘

Figure 47 (Part 1 of 2). Greet Server Source Code

 Chapter 1. Introduction to DCE Application Programming 65

/" Calling rpc_server_inq_bindings to obtain a vector of
binding handles that can be used to register the server's
endpoint. The server then obtains, prints, and frees a
string binding "/

 rpc_server_inq_bindings(&bvec, &st); ──┐
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot inquire bindings - %s\n", &error_inq_st); │

 fflush(stderr); │
 exit(1); │
 } │
 │
 printf("Bindings:\n"); │

bindingfile = fopen'dd:binding","wb+, type=record"); │
 fflush(stdout); │
 │ �7�

for (i = @; i < bvec->count; i++) { │
 rpc_binding_to_string_binding(bvec->binding_h[i], │
 &string_binding, &st); │

printf("%s\n", (char ")string_binding); │
fwrite((char ")string_binding, strlen((char ")string_binding), 1, bindingfile); │

 fflush(stdout); │
 rpc_string_free(&string_binding, &st); │
 fclose(bindingfile); │
 } ──┘

/" To begin listening for RPC requests, the server calls
rpc_server_listen. This call is placed within the TRY of a
TRY, CATCH_ALL, ENDTRY sequence, so that if the server receives
a signal while it is listening, the CATCH_ALL code will allow
the server to shut down gracefully. "/

 TRY { ──┐
 printf("Listening...\n"); │
 fflush(stdout); │
 rpc_server_listen(MAX_CONCURRENT_CALLS, &st); │

if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Error: %s\n", error_text); │

 fflush(stderr); │
 } │
 } │ �8�
 │
 CATCH_ALL { │

printf("Server GREET shutting down\n"); │
 fflush(stdout); │
 } │
 │
 ENDTRY; ──┘

return(@);
}

Figure 47 (Part 2 of 2). Greet Server Source Code

7. Writing the Greet Client Code

In the Greet client program, you provide the Greet server binding information as start up parameters. The
Greet server prints out this information as part of its initialization procedure. The Greet client uses this
binding information to establish communications with the Greet server. The client makes the RPC function
call, passing along the required input parameter, that is, the greeting, to the server. It then prints out the
server’s reply. The specific steps follow. The numbers shown in blocks refer to Figure 48 on page 68.

�1� The client includes the necessary header files.

66 DCE Application Development Guide: Introduction and Style

In the main routine, the client:

�2� Makes all the necessary variable declarations.

�3� Sets the locale for this application to the default locale for your system.

�4� Checks to ensure that five input arguments are received at start up, and prints an error message if
an incorrect number of parameters are received.

�5� Assigns input arguments to the variables representing the constituent parts of the binding to the
server. These are:

1. Protocol sequence (protseq)
2. Host internet identifier (hostid)
3. Endpoint on the server is listening (endpoint).

The client then calls the rpc_string_binding_compose() function to derive a string binding from the
above binding components.

�6� Calls the rpc_binding_from_string_binding() function to obtain an RPC binding. The client prints
out the string binding for checking purposes.

�7� Assigns variable MAX_PASS the value of the last input argument received. It enters a loop where it
makes the greet_rpc function call and prints out the server’s reply the number of times specified by
MAX_PASS.

The source code for the Greet client is shown in Figure 48 on page 68. To obtain more information on
the syntax and use of the RPC functions presented in this example, refer to the appropriate section of
z/OS DCE Application Development Reference for the particular function.

 Chapter 1. Introduction to DCE Application Programming 67

#include <stdio.h> ──┐
#include <locale.h> │ �1�
#include <dce/dce_error.h> │
#include "greet.h" ──┘

int main(int argc, char"argv[])
{
 handle_t h; ──┐
 unsigned long st; │
 int error_inq_st; │
 dce_error_string_t error_text; │

idl_char "string_binding, "protseq, "hostid, "endpoint; │ �2�
static idl_char nil_string[] = ""; │

 int i, MAX_PASS; │
 char reply[STR_SZ]; ──┘

 setlocale(LC_ALL, ""); �3�

if (argc != 5) { ──┐
fprintf(stderr, "Usage: %s protseq hostid endpoint passes\n", argv[@]); │�4�

 fflush(stderr); │
 exit (1); ──┘
 }
 ──┐

protseq = (idl_char ") argv[1]; │
hostid = (idl_char ") argv[2]; │
endpoint = (idl_char ") argv[3]; │

 │
 rpc_string_binding_compose(nil_string, │

protseq, hostid, endpoint, │
nil_string, &string_binding, &st); │ �5�

if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr,"Can't compose string binding - s\n", error_text); │

 fflush(stderr); │
 exit(1); │
 } ──┘

rpc_binding_from_string_binding(string_binding, &h, &st); ──┐
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot get binding from string binding %s - %s\n", │

 string_binding, error_text); │ �6�
 fflush(stderr); │
 exit(1); │
 } │
 │

printf("Bound to %s\n",string_binding); │
 fflush (stdout); ──┘

MAX_PASS= atoi(argv [4]); ──┐
 │

for (i=1; i <= MAX_PASS; i++) { │
greet_rpc(h, "Hello Server !", reply); │ �7�
printf("The Greet Server said: %s\n", reply); │

 fflush(stdout); │
 } ──┘

return(@);
}

Figure 48. Greet Client Source Code

68 DCE Application Development Guide: Introduction and Style

8. Building the Greet Client and Server Programs

Once you have completed writing your client, server, and manager source code, you build this code along
with the client and server stubs using the C/C++ compiler.

In the Shell: Use the make facility with a makefile, such as the one presented in Figure 49 to build
your Greet client and server application programs. This makefile builds the Greet application in one step
by running the IDL compiler and the c89 compiler, and link-edits your application with the DCE runtime
libraries. Any intermediate source and object files used to create the Greet executable file are removed.
This example uses only HFS files.

IF = greet

IDL = /bin/idl
IDL_FLAGS = -no_cpp -v -keep c_source
CFLAGS = -DMVS -D_DCE_THREADS -D_OPEN_SYS -D_OPEN_THREADS -W@,DLL
LIBS = -l dce /usr/lib/EUVPDLL.x

FROMIDL = $(IF).h $(IF)_cstub.c $(IF)_sstub.c
COBJ = $(IF)_client.o $(IF)_cstub.o
SOBJ = $(IF)_server.o $(IF)_sstub.o $(IF)_manager.o

default: $(IF)_client $(IF)_server
$(IF)_client: $(COBJ)
 c89 -o $(if)_client $(COBJ) $(LIBS)
$(IF)_server: $(SOBJ)
 c89 -o $(if)_server $(SOBJ) $(LIBS)

$(COBJ): $(IF).h
$(SOBJ): $(IF).h

$(FROMIDL): $(IDL) $(IF).idl
 $(IDL) $(IF).idl $(IDL_FLAGS)

clean:
 rm -f $(FROMIDL) ".o

Figure 49. Makefile to Build the Greet Application

In Batch: Figure 50 on page 70 presents the JCL to compile the Greet source code. The user ID
USERPRFX is used in this example. You must substitute your own user ID in place of USERPRFX before
compiling your application.

 Chapter 1. Introduction to DCE Application Programming 69

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO COMPILE THE GREET CLIENT, SERVER, AND STUBS CODE
//"
//"---
//" CUSTOMIZABLE SYMBOLIC PARAMETERS
//"---
//"
//" DCEPFX - FOR DCE HEADER FILES
//" LNGPFX - FOR LE HEADER FILES
//"
//""
//CCCLIENT EXEC EDCC,INFILE='USERPRFX.C(GREETCL)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREETCL),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.GREET.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""
//CCCSTUB EXEC EDCC,INFILE='USERPRFX.C(GREETCS)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREETCS),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.GREET.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""
//CCSSTUB EXEC EDCC,INFILE='USERPRFX.C(GREETSS)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREETSS),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.GREET.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""
//CCSMGRB EXEC EDCC,INFILE='USERPRFX.C(GREETMR)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREETMR),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.GREET.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""
//CCSERVER EXEC EDCC,INFILE='USERPRFX.C(GREETSR)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREETSR),DISP=SHR',
// DCEPFX='DCE',LNGPFX='CEE'
//USERLIB DD DSN=USERPRFX.GREET.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//""

Figure 50. Sample JCL to Compile Greet

70 DCE Application Development Guide: Introduction and Style

Once you receive a return code 0 from your compile step, you are ready to link the Greet object code with
the DCE RPC runtime library, the definition side-deck associated with the DCE DLL, the C/C++ runtime
library, and the TCP/IP runtime library.

The sample code in Figure 51 shows the JCL to link-edit the Greet server code, manager code, and
server stub code to create a load module that you can run.

 //JOBNAME JOB (ACCOUNT),...your_job_parameters
 //"""
 //"
 //" JCL TO LINK THE GREET SERVER, MANAGER AND SERVER STUBS OBJECT CODE
 //"
 //"---
 //" CUSTOMIZABLE SYMBOLIC PARAMETERS
 //"---
 //"
 //" LNGPFX - FOR LE OBJECT LIBRARIES
 //" DCEPFX - FOR DCE OBJECT LIBRARIES
 //"
 //"""
 //LKSERVER EXEC EDCPL,OUTFILE='USERPRFX.GREET.LOAD,DISP=SHR',
 // LNGPFX='CEE',DCEPFX='DCE'
 //USERLIB DD DSN=USERPRFX.GREET.OBJ,DISP=SHR
 //SYSLIB DD DSN=&LNGPFX..SCEEOBJ,DISP=SHR
 // DD DSN=&DCEPFX..SEUVLIB,DISP=SHR
 // DD DSN=&DCEPFX..SEUVEXP,DISP=SHR
 //PLKED.SYSIN DD "
 INCLUDE USERLIB(GREETSR)
 INCLUDE USERLIB(GREETMR)
 INCLUDE USERLIB(GREETSS)
 INCLUED SYSLIB(EUVPDLL)
 /"
 //LKED.SYSIN DD "
 NAME GREETSR(R)
 /"

Figure 51. Sample JCL to Link the Greet Server Code

The sample code in Figure 52 on page 72 shows the JCL to link-edit the Greet client object code and
client stub object code with the various runtime libraries to create a load module that you can run.

 Chapter 1. Introduction to DCE Application Programming 71

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO LINK THE GREET CLIENT AND CLIENT STUBS OBJECT CODE
//"
//"---
//" CUSTOMIZABLE SYMBOLIC PARAMETERS
//"---
//"
//" LNGPFX - FOR LE OBJECT LIBRARIES
//" DCEPFX - FOR DCE OBJECT LIBRARIES
//"
//"""
//LKCLIENT EXEC EDCPL,OUTFILE='USERPRFX.GREET.LOAD,DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET.OBJ,DISP=SHR
//SYSLIB DD DSN=&LNGPFX..SCEEOBJ,DISP=SHR
// DD DSN=&DCEPFX..SEUVLIB,DISP=SHR
// DD DSN=&DCEPFX..SEUVEXP,DISP=SHR
//PLKED.SYSIN DD "
 INCLUDE USERLIB(GREETCS)
 INCLUDE USERLIB(GREETCL)
 INCLUDE SYSLIB(EUVPDLL)
/"
//LKED.SYSIN DD "
 NAME GREETCL(R)
/"

Figure 52. Example JCL to Link the Greet Client Code

9. Starting the Greet Server

Once you have successfully linked the Greet application (a return code 4 on the prelink step and return
code 0 for the link step), you can begin to run it.

Ensure that the DCEKERN address space is running on your machine before you start the Greet
application. DCEKERN contains the DCE daemons that are configured to run on your machine. Check if
it is running using the Display Active option of the SDSF panel.

Start the Greet server first to avoid the client application terminating because of server unavailability.

In the Shell: Figure 53 shows the sample command for running the Greet server application in
background mode:

greet_server &

Figure 53. Running the Greet Server in Background Mode

Within a short time, the Greet server is registered and in listening mode. You should see output similar to
that in Figure 54:

Bindings:
ncadg_ip_udp:9.21.6.97[1@36]
ncacn_ip_tcp:9.21.6.97[1668]
Listening...

Figure 54. Greet Server Output in Listening Mode

72 DCE Application Development Guide: Introduction and Style

In Batch: Figure 55 shows the sample JCL for running the Greet server application:

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET SERVER
//"
//"""
//GREETSR EXEC PGM=GREETSR,PARM='POSIX(ON)/'
//BINDING DD DSN=USERPRFX.GREET.LOAD,DISP=SHR
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET.LOAD,DISP=SHR

Figure 55. Example JCL for Running the Greet Server

In this example, the program name GREETSR is passed to the Greet server in argv[0].

After you submit this JOB to start the Greet server, check its status using the SDSF panel. You will
initially see output similar to that in Figure 56. The binding you obtain will be different from this example.
You will need to pass the components of this binding as arguments to your client when you start it up.

Bindings:
ncadg_ip_udp:9.21.6.97[1@36]

Figure 56. Initial Output of Greet Server

Note: The Greet application is designed to run optimally in an interactive environment such as the z/OS
UNIX System Services shell, as you need to see the bindings that are printed out from the Greet
server and pass them in as input parameters to the Greet client application. In the batch
environment, the printf() output from the server may not be visible if the server is in a quiescent
state. If this is the case, you may have to replace the printf() with an fopen() to write to a file or
data set, and browse it for the binding information. In the batch environment, you may find it more
convenient to run applications that do not depend that you note the output from the server, that is,
examples that use CDS to find the location of the server. Except for Greet and Greet1, all the
DCE RPC example applications use CDS, and are more suitable to be run in batch.

10. Starting the Greet Client

Once you have established that the Greet server is running correctly, start the Greet client.

In this example, four arguments are passed to the Greet client program, as follows:

� The protocol sequence — ncadg_ip_udp (protocol sequence ncacn_ip_tcp could also have been
chosen)

� The Greet server’s host internet address — 9.21.6.97
� The Greet server’s end point — 1@36 (If ncacn_ip_tcp is used, then end point 1668 would be used

here)
� The number of times to invoke the RPC call to the Greet server — 3.

The first three arguments passed in the GPARM statement make up a complete string binding:
ncadg_ip_udp:9.21.6.97[1@36].

 Chapter 1. Introduction to DCE Application Programming 73

In the Shell: Figure 57 shows the sample command for running your client program:

greet_client ncadg_ip_udp 9.21.6.97 1@36 3

Figure 57. Example Command for Running the Greet Client in the Shell

In Batch: Figure 58 shows the sample JCL for running your client application:

 //JOBNAME JOB (ACCOUNT),...your_job_parameters
 //"""
 //"
 //" JCL TO STARTUP THE GREET CLIENT
 //"
 //"""
//GREETCL EXEC PGM=GREETCL,PARM='POSIX(ON)/ ncadg_ip_udp 9.21.6.97 1@36 3'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET.LOAD,DISP=SHR

Figure 58. Sample JCL for Running the Greet Client

After you submit this JOB to start the Greet client, check its status using the SDSF Held Output Display
panel. After waiting for your client to finish running, check its output. It should be similar to that in
Figure 59. Of course, your binding will be different from this example.

Bound to ncadg_ip_udp:9.21.6.97[1@36]
The Greet Server said: Hi client !
The Greet Server said: Hi client !
The Greet Server said: Hi client !

Figure 59. Greet Client Output

Checking the Greet server output once more in the SDSF Display Active panel, you see output similar to
that in Figure 60:

Bindings:
ncadg_ip_udp:9.21.6.97[1@36]
ncacn_ip_tcp:9.21.6.97[1668]
Listening...
The client says: Hello Server !
The client says: Hello Server !
The client says: Hello Server !

Figure 60. Final Output for the Greet Server

The Greet client program terminates on its own. To terminate the Greet server program, refer to “Step 4.
Stopping Your Application” on page 52.

74 DCE Application Development Guide: Introduction and Style

Chapter 2. Extending the Greet Application

In this chapter, you add a few variations to the Greet application created in “Creating a Sample
Application: GREET” on page 58. These variations show how some of the DCE services available
enhance your distributed application. You are shown the following:

1. Logging into DCE as a DCE principal, passing your DCE permissions to your client or server
application, and running your DCE applications as a different DCE principal.

2. Different methods for your client application to search and locate its compatible server using the DCE
Host Daemon (DCE Host Daemon) and the RPC Name Service Interface (NSI). Note that you are
shown how to authenticate your application to the DCE Security daemon in order to write to the DCE
Host Daemon and the CDS daemon.

3. How to monitor your application using the z/OS Transmission Control Protocol / Internet Protocol
(TCP/IP) Real Time Network Monitor.

4. An application server with multiple objects and types. In this case, the Greet server application is
extended to respond in one of three different languages, depending on the nationality specified in the
client routine.

Logging Into DCE

All the example applications in this chapter must run in authenticated mode as access to the DCE Host
Daemon or to the CDS data base is controlled by DCE Security. This requires that you log into DCE
Security as a DCE user principal and pass the permissions of that principal to the DCE application you
run. For example, if you log into DCE Security as the principal Ricardo, and this principal possesses
certain permissions such as write access to the CDS namespace, you can pass those permissions to your
DCE application. That is, your application can inherit your user context and thus possess the same
permissions as you.

Prior to logging into DCE Security, consult your DCE administrator, or see z/OS DCE Administration Guide
to set up your user principal name, account, password, group, and all necessary permissions. Once your
account is set up, you can log into DCE from either the Shell, TSO/E, or batch environments.

In the Shell, enter the following command:

dce_login <principal_name> <password>

In TSO/E, enter the following command:

DCELOGIN <principal_name> <password>

In batch, use the following JCL to run the DCELOGIN catalogued procedure:

//JOBNAME JOB (ACCOUNT)
//""
//"
//" JCL TO STARTUP A DCE APPLICATION
//"
//""
//STEP1 EXEC DCELOGIN,PARM='principal_name password'
//STEP2 EXEC PGM=your_program,PARM='POSIX(ON)/'
//STEPLIB DD DSN=USERPRFX.<APPLNM>.LOAD,DISP=SHR

Figure 61. Logging into DCE in Batch

 Copyright IBM Corp. 1994, 2001 75

In the Shell or TSO/E environments, you are prompted for your principal name and password if you do not
enter them.

Each time you log into DCE using any of the above methods, a credentials cache file is created that
corresponds to the account or principal name from which you log in. This file contains your tickets that
validates your identity to DCE Security. By default, an HFS file called krb5ccname, is created in your
home directory that contains the KRB5CCNAME environment variable. This environment variable points
to your credentials cache file created by the dcelogin mechanism.

The contents of the krb5ccname file are similar to the following:

"KRB5CCNAME=FILE:file-name"

The credentials cache file designated by file-name is stored in the /opt/dcelocal/var/security/creds
directory.

Note that the file containing the _EUV_KRB5CCNAME_FILE environment variable can also be a
sequential data set which you allocate as follows:

ALLOC FI(EUVSKRB5) DS('USERPRFX.KRB5CCNAM.FILE')SHR REUSE

This data set can be of any size with logical record length greater than 80. It only contains a single line.
This data set is only used by DCE applications running in TSO/E and batch environments.

You can also specify an HFS file by using PATH= on your ALLOC command as follows:

ALLOC FI(EUVSKRB5) PATH'<HFS-file-name>' PATHOPTS(ORDWR) PATHDISP(KEEP,KEEP)

Changing Your Login Context

You may need to run some of your batch DCE applications under a different identity. If you have multiple
identities in DCE, you can login multiple times to DCE and switch identities. In DCE, you switch identities
by inheriting a login context which is your identity and associated privileges that are specified by your
credentials cache file. For example, you may want to run your client program as a different principal than
your server program, with different DCE permissions. Contrast this with the MVS security paradigm that
you can log on only as one identity.

In the Shell: Use the export command to specify the HFS credentials cache file that you want your
application to inherit. For example, if you are DCE logged-in as principal A and wish to DCE log in as
principal B while preserving the credentials for principal A, enter the following before DCE logging in as
principal B:

export _EUV_SEC_KRB5CCNAME_FILE='$HOME/krb5ccname1'

When you subsequently run your DCE application, it will inherit the credentials based on the setting of the
_EUV_SEC_KRB5CCNAME_FILE environmental variable. If it points to the krb5ccname1 file your
application will inherit the credentials of principal B; if it points to krb5ccname it will inherit the credentials
of principal A.

76 DCE Application Development Guide: Introduction and Style

In TSO/E: To set your login context in TSO/E, allocate the EUVSKRB5 data set as follows, prior to
logging into DCE:

ALLOC FI(EUVSKRB5) DS('USERPRFX.TICKET1')SHR REUSE

To change your context in TSO/E, allocate another data set of a different name, prior to logging into DCE
as follows:

ALLOC FI(EUVSKRB5) DS('USERPRFX.TICKET2')SHR REUSE

You can log in as different identities in each case. The data sets you allocate each point to a different
ticket cache thereby preserving your different identities.

In Batch: To switch your login context in batch, specify a different EUVSKRB5 DD name in your JCL
as in Figure 62. Note that the data set referenced by EUVSKRB5 must be allocated as described above.

//JOBNAME JOB (ACCOUNT)
//""
//"
//" JCL TO STARTUP A DCE APPLICATION
//"
//""
//STEP1 EXEC DCELOGIN,PARM='principal_name password'
//STEP2 EXEC PGM=your_program,PARM='POSIX(ON)/ . . .'
//STEPLIB DD DSN=USERPRFX.<APPLNM>.LOAD,DISP=SHR
//EUVSKRB5 DD DSN=USERPRFX.KRB5CCNAM.FILE,DISP=SHR

Figure 62. Changing Your Login Context for Batch Applications

To specify an HFS file as the EUVSKRB5 file, specify the following in the above JCL:

//EUVSKRB5 DD PATH='<HFS-file-name>'

Note that your tickets will expire after a certain period of time based on your DCE system’s ticket
expiration policy that is set up by your DCE administrator. If your client program inherits your login
context, you should log in or reauthenticate yourself to DCE before the end of the Maximum Ticket
Renewable Time for your system. See your DCE Administrator to find out this time. See z/OS DCE
Administration Guide on how to reauthenticate yourself using the kinit command.

Also, suppose that you log into DCE as a principal and your DCE batch application inherits this principal’s
context. If you log in again to renew or change your context to run subsequent jobs, the batch jobs
currently running or in the queue will not know about this changed context. To eliminate any potential
confusion over the context under which your application runs while in batch mode, your application should
explicitly set up its own login context using the following series of calls:

 � sec_login_setup_identity()
 � sec_login_validate_identity()
 � sec_login_set_context().

A programming example shows how this is done in “Greet with Name-Based Authorization” on page 117.

Notes:

1. Note that any applications that log into DCE using the above APIs or that performs a DCELOGIN in
batch will overwrite your $HOME/krb5ccname file since a batch job in either the Shell or MVS
environments shares the user’s home directory.

2. Ensure that any EUVSKRB5 data sets you create are RACF protected from other z/OS DCE users;
otherwise, they can obtain the same permissions that you have by referencing your EUVSKRB5 data
sets.

 Chapter 2. Extending the Greet Application 77

Inheriting Contexts for Multiple Programs

If you have a batch job that invokes multiple DCE programs, each program can inherit different login
contexts by referencing different EUVSKRB5 data sets in your start up JCL, as shown in Figure 63:

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP MULTIPLE DCE JOBS
//"
//"""
//JOB1 EXEC PGM=PROGRAM1,PARM='POSIX(ON)/ your_parameters'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.<APPLNM>.LOAD,DISP=SHR
//EUVSKRB5 DD DSN=dsn1,DISP=SHR
//"""
//JOB2 EXEC PGM=PROGRAM2,PARM='POSIX(ON)/ your_para meters'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//CEEDUMP DD SYSOUT="
//SYSUDUMP DD DSN=USERPRFX.<APPLNM>.LOAD,DISP=SHR
//EUVSKRB5 DD DSN=dsn2,DISP=SHR
//"""

Figure 63. Starting Multiple DCE Applications in Batch

If you want to keep the login context the same for each of the programs, simply reference the same
EUVSKRB5 data set in each job step.

Searching for Your Server

In “9. Starting the Greet Server” on page 72, the Greet server application prints its string binding after
using the rpc_binding_to_string_binding() function. The components of the string binding are passed to
the Greet client as input parameters during client start up. The Greet client uses the binding information
to locate the Greet server from the RPC run time. In that example, you pass the complete string binding
information, including:

� The supported RPC protocol
� The server’s host machine address
� The server’s endpoint.

Finding a server in this manner is cumbersome, especially for users running client applications, because
they must find out the complete server address. Usually this information must be provided to users by an
external method; perhaps they have to look in a file, or ask someone. The binding information may not
always be available to users. Two methods to locate the server are introduced in this section to ease the
search. These methods use the following RPC services:

1. DCE Host Daemon (DCE Host Daemon)
2. Name Service Interface (NSI).

For a detailed discussion on obtaining server binding information and managing bindings, refer to
Chapter 6, “Binding” on page 203.

78 DCE Application Development Guide: Introduction and Style

Using the DCE Host Daemon

Finding the server by using the DCE Host Daemon relieves the client application from the requirement of
knowing the server’s endpoint. The client still requires binding information on the server’s protocol
sequence and its host machine address. This information constitutes a partial binding. In Figure 64 on
page 80, the DCE Host Daemon is used to locate the server endpoint and obtain a binding that is fully
bound.

Modifying the Greet Server Code: You can find the source code for this version of the Greet
example in the /usr/lpp/dce/examples/greet1 directory. The source files supplied with z/OS DCE for this
example are as follows:

� greet1.idl (the IDL file)
� greet1_client.c (the client code)
� greet1_server.c (the server code)
� greet1_manager.c (the manager code)

 � Makefile
 � README.

If you cannot find the Greet1 example source files in the above directory, consult your systems
programmer to find where they are located in your system.

The IDL file content is the same as before, except for the interface UUID. It is called greet1.idl for this
example. To avoid any potential conflicts with other instances of the same Greet1 example and ensure
that you are running a unique instance, you should generate your own interface UUID using the UUID
Generator and replace the interface UUID in the IBM-supplied Greet1 IDL file with it.

In this version of the Greet program, make the following changes to the server code:

�1� Replace the rpc_server_use_all_protseq() call in the previous Greet example with two calls:
rpc_network_is_protseq_valid(), and rpc_server_use_protseq(). The
rpc_network_is_protseq_valid() checks whether a specified transport protocol is supported by the
RPC runtime library and the operating system. In this example, ncadg_ip_udp which represents
connectionless or user datagram protocol/interface protocol (UDP/IP) is checked. The server then
calls rpc_server_use_protseq() to obtain an endpoint on which to listen using the UDP/IP protocol.
This protocol is hard-coded in this example.

�2� To use the DCE Host Daemon to locate the Greet server endpoint, add the rpc_ep_register() call
prior to the TRY, CATCH_ALL, ENDTRY code.

�3� Because the code registers the server endpoint to the DCE Host Daemon, it should be unregistered
when the server is shutdown in the CATCH_ALL macro:

The sample code in Figure 64 on page 80 shows the modified Greet1 server routine.

 Chapter 2. Extending the Greet Application 79

#pragma runopts(stack(12K,4K,ANY,KEEP))

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include <dce/exc_handling.h>
#include "greet1.h"

#define MAX_CONCURRENT_CALLS 5

/" In the first part of the main function, the server calls
the rpc_network_is_protseq_valid to check that its argument
specifies a protocol sequence that is supported on its host
both by the runtime library and the operating system. "/

int main (int argc, char "argv[])
{
 rpc_binding_vector_p_t bvec;
 unsigned long st;
 int error_inq_st;
 dce_error_string_t error_text;
 idl_boolean validfamily;
 idl_char "string_binding;
 int i;

 setlocale(LC_ALL, "");

if (argc != 1) {
fprintf(stderr, "Usage: %s\n", argv[@]);

 fflush(stderr);
 exit(1);
 }

validfamily = rpc_network_is_protseq_valid("ncadg_ip_udp", &st); ──┐
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot check protocol sequence - %s\n", │

 error_text); │
 fflush(stderr); │
 exit(1); │
 } │
 │
 if (!validfamily) { │ �1�

fprintf(stderr, "Protocol sequence is not valid\n"); │
 fflush(stderr); │
 exit (1); │
 } │
 │

/" Calling rpc_server_use_protseq to obtain an endpoint │
on which to listen "/ │

 │
rpc_server_use_protseq("ncadg_ip_udp", MAX_CONCURRENT_CALLS, &st); │
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr,"Cannot use protocol sequence - %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } ──┘

Figure 64 (Part 1 of 3). Sample Code to Register the Greet1 Server Endpoint to the DCE Host Daemon

80 DCE Application Development Guide: Introduction and Style

/" Calling rpc_server_register_if to register its interface with
the RPC runtime by suppying its interface specifier "/

rpc_server_register_if(greet_v1_@_s_ifspec, NULL, NULL, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr,"Cannot register interface - %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

/" Calling rpc_server_inq_bindings to obtain a vector of
binding handles that can be used to register the server's
endpoint. The server then obtains, prints, and frees a
string binding "/

 rpc_server_inq_bindings(&bvec, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr,"Cannot inquire bindings - %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

 printf("Bindings:\n");
 fflush(stdout);

for (i = @; i < bvec->count; i++) {
 rpc_binding_to_string_binding(bvec->binding_h[i],
 &string_binding, &st);

printf("%s\n", (char ")string_binding);
 fflush(stdout);
 rpc_string_free(&string_binding, &st);
 }

/" The server endpoint is registered in the local Endpoint Map "/ ──┐
 │
 rpc_ep_register(greet_v1_@_s_ifspec, bvec, │
 (uuid_vector_p_t) NULL, │

(unsigned_char_p_t) "greet version 1.@ server", &st); │
if (st != error_status_ok) { │ �2�

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr,"Cannot register end point: %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } ──┘

/" To begin listening for RPC requests, the server calls
rpc_server_listen. This call is placed within the TRY of a
TRY, CATCH_ALL, ENDTRY sequence, so that if the server receives
a signal while it is listening, it can unregister its interface
and its endpoint before it exits. "/

Figure 64 (Part 2 of 3). Sample Code to Register the Greet1 Server Endpoint to the DCE Host Daemon

 Chapter 2. Extending the Greet Application 81

 TRY {
 printf("Listening...\n");
 fflush(stdout);
 rpc_server_listen(MAX_CONCURRENT_CALLS, &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Error: %s\n",error_text);

 fflush(stderr);
 }
 }

 CATCH_ALL { ──┐
printf("Unregistering endpoint \n"); │

 fflush(stdout); │
 rpc_ep_unregister(greet_v1_@_s_ifspec, bvec, │

(uuid_vector_p_t) NULL, &st); │
if (st != error_status_ok) { │ �3�

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot unregister endpoint: %s\n", │

 error_text); │
 fflush(stderr); │
 } │
 } ──┘

 ENDTRY;

return (@);
}

Figure 64 (Part 3 of 3). Sample Code to Register the Greet1 Server Endpoint to the DCE Host Daemon

The Greet1 client code, in Figure 65 on page 83 has been simplified to pass the string binding as one
start up parameter instead of three (the protocol sequence. host id, and endpoint) as in the first Greet
example. In this example, the rpc_string_binding_compose() function is not required and has been
removed.

82 DCE Application Development Guide: Introduction and Style

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include "greet1.h"

int main(int argc, char "argv[])
{
 handle_t h;
 unsigned long st;
 int error_inq_st;
 dce_error_string_t error_text;
 idl_char "string_binding;
 int i, MAX_PASS;
 char reply[STR_SZ];

 setlocale(LC_ALL, "");

if (argc != 3) {
fprintf(stderr, "Usage: %s address passes\n",argv[@]);

 fflush(stderr);
 exit (1);
 }

string_binding = (idl_char ") argv[1];

rpc_binding_from_string_binding(string_binding, &h, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot get binding from string binding %s - %s\n",

 string_binding,error_text);
 fflush(stderr);
 exit(1);
 }

printf("Bound to %s\n",string_binding);
 fflush (stdout);

MAX_PASS= atoi(argv [2]);

for (i=1; i <= MAX_PASS; i++) {
greet_rpc(h, "Hello Server !", reply);
printf("The Greet Server said: %s\n", reply);

 fflush(stdout);
 }

return(@);
}

Figure 65. Greet1 Client Code

z/OS DCE has implemented access control to the DCE Host Daemon that runs on z/OS. For this Greet
server application and any DCE server application that accesses the DCE Host Daemon, the principal
name (or the group to which it belongs) running the application requires the insert permission to register
the server endpoint, and the delete permission to unregister the server endpoint. Server principals should
use a special server permission that combines the insert and delete permission. There is also a Security
group that is defined during the configuration of your machine which contains the necessary permissions
to the DCE Host Daemon. Your server application inherits this group’s permissions to the DCE Host
Daemon if it becomes a member of this group. See z/OS DCE Administration Guide for information on
granting these permissions to DCE server principals.

 Chapter 2. Extending the Greet Application 83

The name service entry that points to the DCE Host Daemon running on a z/OS machine is
/.:/hosts/<hostname>/config/epmap, where <hostname> is the DCE host name of interest. For example,
to list the ACL entries associated with the DCE Host Daemon that runs on a machine with host name
bass use the following command:

dcecp -c acl show /.:/hosts/bass/config/epmap

Compile and link-edit the Greet1 server code as before, using the Makefile if you are building in the Shell,
or using JCL similar to that in “8. Building the Greet Client and Server Programs” on page 69 if you are
building in batch.

To start the Greet1 server in the Shell, in background mode, use the following command:

greet1_server &

To start up the Greet1 server in batch, use the example JCL shown in Figure 66.

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET1 SERVER
//"
//"""
//GREET1SR EXEC PGM=GREET1SR,PARM='POSIX(ON)/'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET1.LOAD,DISP=SHR

Figure 66. Starting the Greet1 Server in Batch Using the DCE Host Daemon

When you check your output, you see the same output as before in Figure 55 on page 73, but with a
single different endpoint for the server binding (see Figure 67).

Bindings:
ncadg_ip_udp:9.21.6.97[1@44]
Listening...

Figure 67. Initial Greet1 Server Output

Note on Registering Servers: You can register your server application’s endpoint information with
the DCE Host Daemon by using either the rpc_ep_register() or the rpc_ep_register_no_replace() API.
For servers running on connection-oriented RPC, the RPC runtime may open more than one socket,
resulting in more than one binding handle returned from the rpc_server_inq_bindings() call. The binding
handles returned differ only in their endpoint information.

The implication to your server applications running on connection-oriented RPC is that when you register
your endpoint to the DCE Host Daemon, you must use rpc_ep_register_no_replace() instead of
rpc_ep_register() in your code. If you use rpc_ep_register(), only the last binding handle information
received from the RPC runtime is registered. This situation does not occur for connectionless RPC, so
you can use rpc_ep_register() API.

84 DCE Application Development Guide: Introduction and Style

Balancing Server Workload: For your application servers that register their dynamic endpoints
with the DCE Host Daemon, the corresponding client applications rely on the RPC runtime and DCE Host
Daemon to locate the compatible server.

For connection-oriented RPC, the RPC runtime internally calls rpc_ep_resolve_binding() to resolve a
partially bound server binding handle to obtain a handle that is fully bound. If more than one compatible
server instance is registered in the local endpoint map, this routine randomly selects one server to achieve
the load balance.

For connectionless RPC, the DCE Host Daemon always selects the first compatible server instance from
the endpoint map database. This may result in this server instance becoming overworked while other
compatible server instances are idle. To minimize this workload imbalance, use object UUIDs to specify
specific server instances. For more information on using object UUIDs, refer to “Using Object UUIDs to
Avoid Binding Ambiguity” on page 225.

Modifying the Greet Client Start up: To start the Greet1 client, pass the transport protocol and
the server’s host identifier as one argument to the client program. This constitutes a partial binding as
there is no endpoint component. You do not pass the endpoint argument to the Greet client at start up as
in the previous example. Because the Greet server registers its endpoint to the DCE Host Daemon, the
DCE Host Daemon provides the endpoint information enabling the Greet client to find its compatible
server. No special permissions are required to read from the DCE Host Daemon end point map, therefore
the Greet client can run unauthenticated.

To start the Greet1 client in the Shell, use the following command:

greet1_client ncadg_ip_udp:9.21.6.97[1@44] 1

To start the Greet1 client in batch, use the sample JCL as shown in Figure 68.

//JOBNAME JOB (ACCOUNT)
//""
//"
//" JCL TO STARTUP THE GREET1 CLIENT
//"
//""
//GREET1 EXEC PGM=GREET1CL,PARM='POSIX(ON)/ ncadg_ip_udp:9.21.6.97 1@44 1'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET1.LOAD,DISP=SHR

Figure 68. Greet1 Client Start up JCL

The Greet1 client output appears as in Figure 69.

Bound to ncadg_ip_udp:9.21.6.97[1@44]
The Greet1 Server said: Hi client !

Figure 69. Greet1 Client Output

The Greet1 server output appears as in Figure 70 on page 86.

 Chapter 2. Extending the Greet Application 85

Bindings:
ncadg_ip_udp:9.21.6.97[1@44]
Listening...
The client says: Hello Server !

Figure 70. Final Greet1 Server Output

Using the Name Service Interface

The easiest method of locating a server binding is to use the RPC name service interface. This is the
interface to the Cell Directory Service (CDS), the database used to store server names in a cell. Using
CDS in a client application removes the requirement of knowing the server’s host address and protocol
sequence. And, if the DCE Host Daemon is used along with CDS, its end point is also not required. The
server is accessed with an easy to remember entry name, as opposed to a cryptic string binding. This
access requires additional DCE function calls in both your client and server application. For more
information on using the NSI, refer to Chapter 7, “Using the DCE Name Service” on page 215.

Usually, a server exports binding information for one or more of its interface identifiers and its object
UUIDs, if any, to an entry in the CDS database. The name service entry to which a server exports binding
information is known as a server entry. Clients search for exported binding information associated with
an interface and object. Distributed applications use the name service to place, inquire and manage
information about server entries.

In this example, the Greet server’s binding information is stored in the CDS database.

You can find the source code for this version of the Greet example in the /usr/lpp/dce/examples/greet2
directory. The source files supplied with z/OS DCE for this example are as follows:

� greet2.idl (the IDL file)
� greet2_client.c (the client code)
� greet2_server.c (the server code)
� greet2_manager.c (the manager code)

 � Makefile
 � README.

If you cannot find the Greet2 example source files in the above directory, consult your systems
programmer to find where they are located in your system.

The IDL file content is the same as before, except for the interface UUID. It is called greet2.idl for this
example. To avoid any potential conflicts with other instances of the same Greet2 example and ensure
that you are running a unique instance, you should generate your own interface UUID using the UUID
Generator and replace the interface UUID in the IBM-supplied Greet2 IDL file with it.

The following section shows you how to modify the Greet application to export and import the Greet server
binding to and from the CDS database.

86 DCE Application Development Guide: Introduction and Style

Exporting the Greet Server Binding to the Namespace: The only major changes you
make to the Greet server are shown by the following reference keys in Figure 71 on page 88:

�1� Declare a new variable entry_name, which stores the name of the Greet server entry. It is passed
as parameter to the Greet server during start up.

�2� Export the binding received from the RPC runtime to the CDS namespace using the
rpc_ns_binding_export() function. The export to the namespace must occur after the server
endpoint is registered in the local end point map.

Note: The APIs for exporting bindings to the namespace require a login context for your server.
Normally the server inherits this context when you log into DCE. Consult z/OS DCE Administration
Guide for more information on logging into DCE.

�3� Unexport the binding from the namespace from within the TRY, CATCH ALL, and ENDTRY
sequence to ensure that the namespace entry is deleted prior to termination of the Greet server
application in the event of an error.

There are no changes required to the Greet manager code. Figure 71 on page 88 shows the Greet
server source code modified to use the RPC name service interface to CDS.

 Chapter 2. Extending the Greet Application 87

#pragma runopts(stack(12K,4K,ANY,KEEP))

 #include <stdio.h>
 #include <locale.h>
 #include <dce/dce_error.h>
 #include <dce/exc_handling.h>
 #include "greet2.h"

 #define MAX_CONCURRENT_CALLS 5

 /" In the first part of the main function, the server calls
the rpc_network_is_protseq_valid to check that its argument
specifies a protocol sequence that is supported on its host
both by the runtime library and the operating system. "/

 int main (int argc, char "argv[])
 {
 rpc_binding_vector_p_t bvec;
 unsigned long st;
 int error_inq_st;
 dce_error_string_t error_text;
 idl_boolean validfamily;
 idl_char "string_binding;
 char "entry_name; �1�
 int i;

 setlocale(LC_ALL, "");

if (argc != 2) {
fprintf(stderr, "Usage: %s <server_entry_name>\n", argv[@]);

 fflush(stderr);
 exit(1);
 }

entry_name = argv[1]; �1�

validfamily = rpc_network_is_protseq_valid("ncadg_ip_udp", &st);
if (st != error_status_ok) {

 dce_error_inq_text(st,error_text,&error_inq_st);
fprintf(stderr, "Cannot check protocol sequence - %s\n",

 error_text);
 fflush(stderr);
 exit(1);
 }

 if (!validfamily) {
fprintf(stderr, "Protocol sequence is not valid\n");

 fflush(stderr);
 exit (1);
 }

/" Calling rpc_server_use_protseq to obtain an endpoint
on which to listen "/

Figure 71 (Part 1 of 4). Greet2 Server Source Code — Modified for CDS.

88 DCE Application Development Guide: Introduction and Style

rpc_server_use_protseq("ncadg_ip_udp", MAX_CONCURRENT_CALLS, &st)
if (st != error_status_ok) {

 dce_error_inq_text(st,error_text, &error_inq_st);
printf("Cannot use protocol sequence - %s\n",error_text);

 fflush(stdout);
 exit(1);
 }

/" Calling rpc_server_register_if to register its interface with
the RPC runtime by supplying its interface specifier "/

rpc_server_register_if(greet_v1_@_s_ifspec, NULL, NULL, &st);
if (st != error_status_ok) {

 dce_error_inq_text(st,error_text,&error_inq_st);
fprintf("Cannot register interface - %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

/" Calling rpc_server_inq_bindings to obtain a vector of
binding handles that can be used to register the server's
endpoint. The server then obtains, prints, and frees a
string binding "/

 rpc_server_inq_bindings(&bvec, &st);
if (st != error_status_ok) {

 dce_error_inq_text(st,error_text,&error_inq_st);
fprintf("Cannot inquire bindings - %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

printf("Server %s bindings:\n", entry_name);
 fflush(stdout);

for (i = @; i < bvec->count; i++) {
 rpc_binding_to_string_binding(bvec->binding_h[i],
 &string_binding, &st);

if (st != error_status_ok) {
 dce_error_inq_text(st, error_text,&error_inq_st);

fprintf(stderr, "Cannot convert to string binding: %s\n",
 error_text);
 fflush(stderr);
 exit(1);
 }

printf("%s\n", (char ")string_binding);
 fflush(stdout);
 rpc_string_free(&string_binding, &st);

if (st != error_status_ok) {
 dce_error_inq_text(st, error_text,&error_inq_st);

fprintf(stderr, "Cannot free string memory: %s\n",
 error_text);
 fflush(stderr);
 exit(1);
 }

 }

Figure 71 (Part 2 of 4). Greet2 Server Source Code — Modified for CDS.

 Chapter 2. Extending the Greet Application 89

/" The server endpoint is registered in the local Endpoint Map "/

 rpc_ep_register(greet_v1_@_s_ifspec, bvec,
 (uuid_vector_p_t) NULL,

(unsigned_char_p_t) "greet version 1.@ server",
 &st);

if (st != error_status_ok) {
 dce_error_inq_text(st,error_text,&error_inq_st);

fprintf(stderr, "Cannot register end point: %s\n", error_text);
 fflush(stderr);
 exit(1);

/" export the binding vector the runtime gave us to the namespace "/ ──┐
 │
 rpc_ns_binding_export(rpc_c_ns_syntax_dce, entry_name, │

greet_v1_@_s_ifspec, bvec, (uuid_vector_t ")NULL, &st); │
if (st != error_status_ok) { │

 dce_error_inq_text(st, error_text,&error_inq_st); │ �2�
fprintf(stderr, "Cannot export binding vector: %s\n", │

 error_text); │
 fflush(stderr); │
 exit(1); │
 } ──┘

/" To begin listening for RPC requests, the server calls
rpc_server_listen. This call is placed within the TRY of a
TRY, CATCH_ALL, ENDTRY sequence, so that if the server receives
a signal while it is listening, it can unexport its entry from
the namespace and unregister its interface before it exits. "/

 TRY {
printf("Server %s is listening...\n", entry_name);

 fflush(stdout);
 rpc_server_listen(MAX_CONCURRENT_CALLS, &st);

if (st != error_status_ok) {
 dce_error_inq_text(st, error_text,&error_inq_st);

fprintf(stderr, "Error: %s\n",error_text);
 fflush(stderr);
 }
 }

 CATCH_ALL {
 CLEANUP:

/" unexport binding vector from namespace --
not usually done for a persistent server "/ ──┐

 │
fprintf(stdout, "Server %s unexporting\n", entry_name); │

 fflush(stdout); │
 │ �3�
 rpc_ns_binding_unexport(rpc_c_ns_syntax_dce, │
 entry_name, greet_v1_@_s_ifspec, │

(uuid_vector_t ")NULL, &st); │
 ──┘

Figure 71 (Part 3 of 4). Greet2 Server Source Code — Modified for CDS.

90 DCE Application Development Guide: Introduction and Style

if (st != error_status_ok) { ──┐
 dce_error_inq_text(st, error_text,&error_inq_st); │

fprintf(stderr, "Cannot unexport binding vector: %s-n", │
 error_text); │ �3�
 fflush(stderr); │
 } │
 ──┘

printf("Unregistering endpoint \n");
 fflush(stdout);

 rpc_ep_unregister(greet_v1_@_s_ifspec, bvec,
(uuid_vector_p_t) NULL, &st);
if (st != error_status_ok) {

 dce_error_inq_text(st, error_text,&error_inq_st);
fprintf(stderr, "Cannot unregister endpoint: %s\n",

 error_text);
 fflush(stderr);
 }

 }

 ENDTRY;

return(@);
}

Figure 71 (Part 4 of 4). Greet2 Server Source Code — Modified for CDS.

Importing the Greet2 Server Binding from the Namespace

The only major changes you make to the Greet2 client routine to import the Greet2 server binding is
shown in Figure 72 on page 92 by the following reference keys:

�1� Declare a new variable server_name, which is used to store the name of the Greet2 server entry.
The client uses this name to locate the Greet server in the CDS namespace.

�2� Declare a new variable import_context required for RPC to track the import context internally.

�3� Call the import routines to obtain a binding handle for the Greet2 server as following:

rpc_ns_binding_import_begin()
rpc_ns_binding_import_next()
rpc_ns_binding_import_done()

Figure 72 on page 92 shows the Greet client source code modified to use the RPC name service
interface to CDS.

 Chapter 2. Extending the Greet Application 91

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include "greet2.h"

int main(int argc, char"argv[])
{
 handle_t h;
 unsigned long st;
 int error_inq_st;
 dce_error_string_t error_text;
 idl_char "string_binding;
 int i, MAX_PASS;
 char reply[STR_SZ],
 "server_name; �1�
 rpc_ns_import_handle_t import_context; �2�

 setlocale(LC_ALL, "");

if (argc != 3) {
fprintf(stderr, "Usage: %s <server_name> <passes>\n", argv[@]);

 fflush(stderr);
 exit (1);
 }

server_name = argv[1]; �1�

/" import compatible server bindings from the namespace "/

 rpc_ns_binding_import_begin(rpc_c_ns_syntax__dce, ──┐
 server_name, greet_v1_@_c_ifspec, │ �1�

(uuid_t ")NULL, &import_context, &st); │ �2�
if (st != error_status_ok) { │

 dce_error_inq_text(st,error_text, &error_inq_st); │
fprintf(stderr, "Cannot begin importing binding: %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │

/" sift through bindings and choose the first one over udp "/ │
 │ �3�
 │

while (1) { │
rpc_ns_binding_import_next(import_context, &h, &st); │
if (st == rpc_s_no_more_bindings) { │

 dce_error_inq_text(st,error_text,&error_inq_st); │
fprintf(stderr, "Cannot find binding over udp: %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } ──┘

Figure 72 (Part 1 of 2). Greet2 Client Source Code - Modified for CDS

92 DCE Application Development Guide: Introduction and Style

rpc_binding_to_string_binding(h, &string_binding, &st); ──┐
if (st != error_status_ok) { │

 dce_error_inq_text(st,error_text,&error_inq_st); │
fprintf(stderr, "Cannot convert binding to \ │

string binding: %s\n",error_text); │
 fflush(stderr); │
 exit(1); │
 } │
 │

/" out of curiosity, print the binding "/ │
 │

if (strstr(string_binding, "ncadg_ip_udp") != @) { │
fprintf(stdout, "Client bound to server %s at %s\n", │

 server_name, string_binding); │
 fflush(stdout); │
 rpc_string_free(&string_binding, &st); │
 break; │
 } │
 │
 rpc_string_free(&string_binding, &st); │ �3�

if (st != error_status_ok) { │
 dce_error_inq_text(st,error_text,&error_inq_st); │

fprintf(stderr, "Cannot free string memory: %s\n", error_text); │
 fflush(stderr); │
 exit(1); │
 } │
 │
 │
 } │
 │

/" end the binding import lookup loop "/ │
 │
 rpc_ns_binding_import_done(&import_context, &st); │

if (st != error_status_ok) { │
 dce_error_inq_text(st,error_text,&error_inq_st); │

fprintf(stderr, "Cannot end binding import: %s\n",error_text); │
 fflush(stderr); │
 exit(1); │
 } ──┘

 fprintf(stdout, "\n");
 fflush(stdout);

 MAX_PASS=atoi(argv [2]);

for (i=1; i <= MAX_PASS; i++) {
greet_rpc(h, "Hello Server !", reply);
printf("The Greet Server said: %s\n", reply);

 fflush(stdout);
 }

return(@);
}

Figure 72 (Part 2 of 2). Greet2 Client Source Code - Modified for CDS

Compile and link-edit the modified Greet client and server as in “8. Building the Greet Client and Server
Programs” on page 69.

 Chapter 2. Extending the Greet Application 93

Starting the Greet2 Server and Client

Start the Greet client and server as you did in “9. Starting the Greet Server” on page 72 and “10. Starting
the Greet Client” on page 73. In this instance, you modify the parameters passed to both the client and
server applications during their start up.

Note: Before you start up the Greet server, ensure that the following processes are running in your DCE
cell:

� DCE Host daemon (dced)
� Security daemon (SECD)
� CDS advertiser (CDSADV)
� CDS clerk (CDSCLRK)
� CDS daemon (CDSD).

You can display the active status of any DCE processes running on your machine using the SDSF
‘Display active users of the system’ panel. For information on processes running on other machines in
your cell, consult your DCE administrator.

Starting the Greet2 Server for CDS: As before in “Using the DCE Host Daemon” on page 79,
you must log into DCE but in this example, the principal under which your server application runs requires
insert access to the parent directory in the CDS namespace to which it exports its entry object. Because
the principal that runs your server application creates the object greet2 in the namespace, it possesses
read and write permission to that object by default, enabling it to manipulate the object.

For the server, pass its entry name, /.:/<your_dir_name>/greet2:, as an argument to the Greet server
program using the GPARM= statement. The /.:/ indicates that your_dir_name/greet2 is the cell-relative part
of the Greet server’s name service entry name. The parent directory, represented by /<your_dir_name>
must exist in the CDS namespace so you can export the leaf entry, that is, the object greet2, into it.
Choose a directory name that is meaningful to you and have your DCE administrator create this directory
in the CDS namespace, as well as granting your principal the required insert permission to this directory.
This name, greet2, is exported into the CDS namespace by the Greet server.

To start the Greet2 server in the Shell, use the following command:

greet2_server /.:/<your_dir_name>/greet2

To start the Greet2 server in batch, use sample JCL for starting up the server in Figure 73.

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET2 SERVER
//"
//"""
//GREET2SR EXEC PGM=GREET2SR,PARM='POSIX(ON)/ /.:/<your_dir_name>/greet2'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET2.LOAD,DISP=SHR

Figure 73. Starting the Greet2 Server in Batch Using CDS

After you have started the server, check the server output. It should be similar to that in Figure 74 on
page 95.

94 DCE Application Development Guide: Introduction and Style

Server /.:/<your_dir_name>/greet2 bindings:
ncadg_ip_udp:9.21.6.97[1131]
Server /.:/<your_dir_name>/greet2 is listening...

Figure 74. Greet2 Server Output

Prior to starting up your client, log into DCE once more, but as a different principal than for the server
application. The principal under which your client runs requires read permission to the CDS namespace.
Consult you DCE Administrator to ensure that this principal has read permission to the greet2 object in
the namespace. In this example the input parameter to the client routine has changed to the server entry
name — /.:/<your_dir_name>/greet2, instead of the string binding as shown in Figure 58 on page 74.

To start the Greet2 client in the Shell, use the following command:

greet2_client /.:/<your_dir_name>/greet2 1

To start the Greet2 client in batch, use the sample JCL shown in Figure 75.

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET2 CLIENT
//"
//"""
//GREET2CL EXEC PGM=GREET2CL,PARM='/.:/<your_dir_name>/greet 2'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET2.LOAD,DISP=SHR

Figure 75. Starting the Greet2 Client in Batch for CDS

After the Greet2 client application terminates, check its output. You should see output similar to that in
Figure 76.

Client bound to server /.:/<your_dir_name>/greet2 at ncadg_ip_udp:9.21.6.97[1131]
The Greet Server said: Hi client !

Figure 76. Greet2 Client Output

Checking the Greet2 server output once more, you should see output similar to that in Figure 77.

Server /.:/<your_dir_name>/greet2 bindings:
ncadg_ip_udp:9.21.6.97[1131]
Server /.:/<your_dir_name>/greet2 is listening...
The client says: Hello Server !

Figure 77. Greet2 Server Output

 Chapter 2. Extending the Greet Application 95

Monitoring Your Distributed Application

To monitor your distributed application and associated DCE processes in real time, use the z/OS TCP/IP
Real Time Network Monitor. This monitor displays all the TCP/IP network connections of the various
applications running on your z/OS host. You can view the connections as they are assigned to your
application, and watch communications as they occur across the network between various DCE entities
such as the DCE Host Daemon, CDS Advertiser and Clerk, and your distributed application. This step is
especially useful when you are monitoring the start up of your DCE application.

To invoke a dynamic version of the network monitor, enter the following command from any ISPF
command line:

tso netstat int 2

The int 2 is the interval parameter that specifies an update of the monitor output. In the above example,
the monitor output is refreshed every 2 seconds. For complete information about using the NETSTAT
command, refer to z/OS Communications Server: IP User's Guide, SC31-8780. You see a screen similar
to that contained in Figure 78.

O P
@1/16/94 MVS TCP/IP Real Time Network Monitor 14:42:@3

User Id B Out B In L Port Foreign Socket State Idle
-------- ----- ----- ------ -------------- ----------- --------
FTPSERVE @ @ FTP-C ".." Listen 122:21:@6
INTCLIEN @ @ TELNET ".." Listen 122:21:14
OMVS @ @ 135 ".." Listen 5:19:@4
OMVS 21595 22729 135 ".." UDP @:@@:@1
OMVS 864 7@4 1116 ".." UDP @:@@:@1
OMVS 244912 14639@ 1272 ".." UDP @:28:5@
OMVS 32628 1@1848 1273 ".." UDP @:28:5@
OMVS @ @ 88 ".." UDP @:28:5@
OMVS @ @ 194@ ".." Listen @:26:18
OMVS 34@ 9@5 194@ TLBDSBME..1133 Established @:19:39
OMVS 5694 5392 113@ ".." UDP @:@@:@@

Refresh interval: 2 Seconds. TCB's In Use: 3
U V

Figure 78. Network Monitor Output - Dynamic Update

Column Heading Explanation

B Out Bytes received on the connection

B In Bytes sent on the connection

L Port Local internet address — port number pair

Foreign Socket Foreign internet address — port number pair

In the above example, the DCE daemons running on your machine, such as dced, CDS Clerk, and CDS
Advertiser are represented by user ID OMVS.

When you start the Greet2 server and client applications, and invoke the NETSTAT monitor, you see a
number of ports established for your application, similar to Figure 79 on page 97. In this example, the
Greet2 server is denoted by User ID GREET2SR; the Greet2 client is denoted by User ID GREET2CL.

96 DCE Application Development Guide: Introduction and Style

O P
@1/16/94 MVS TCP/IP Real Time Network Monitor 16:39:46

User Id B Out B In L Port Foreign Socket State Idle
-------- ----- ----- ------ -------------- ----------- --------
FTPSERVE @ @ FTP-C ".." Listen 124:13:22
INTCLIEN @ @ TELNET ".." Listen 124:13:3@
OMVS @ @ 135 ".." Listen 7:11:2@
OMVS 28892 29475 135 ".." UDP @:@@:@1
OMVS 972 792 1116 ".." UDP @:@@:@1
OMVS 244912 14639@ 1272 ".." UDP @:31:42
OMVS 32628 1@1848 1273 ".." UDP @:3@:42
OMVS @ @ 88 ".." UDP @:3@:42
OMVS @ @ 194@ ".." Listen @:@1:11
OMVS 634 18@9 194@ TLBDSBME..1133 Established @:16:47
OMVS 511 1149 194@ TLBDSBME..1141 Established 1:41:2@
OMVS 651 919 194@ TLBDSBME..1145 Established @:@@:11
OMVS 12243 11336 113@ ".." UDP @:@@:@@
GREET2SR 1.. 312 1134 1..1 UDP .:..:.1
GREET2SR 949 44. 1135 1..1 UDP .:..:.1
GREET2SR 1149 511 1141 TLBDSBME..194. Established 1:41:2.
GREET2CL 919 651 1145 TLBDSBME..194. Established .:..:11
GREET2CL 312 1.. 1137 1..1 UDP .:..:.1

U V

Figure 79. Network Monitor Output — Client and Server Communication

Using Automatic Binding Handles

There are several methods for a client to manage binding information for its remote procedure calls. The
most common methods include: explicit, implicit, and automatic. All the examples presented so far use
explicit binding.

The different binding management methods are discussed in detail in “Binding Methods” on page 209.

The automatic method is the simplest way for a client to manage binding information. With automatic
binding, the server exports its binding information to a name service database, and the client stub
automatically manages a binding for the application code. Binding import operations are conducted by the
client stub code.

Note that the automatic binding method only works in an unauthenticated mode.

You can find the source code for this version of the Greet example in the /usr/lpp/dce/examples/greet3
directory. The source files supplied with z/OS DCE for this example are as follows:

� greet3.idl (the IDL file)
� greet3.acf (the IDL file)
� greet3_client.c (the client code)
� greet3_server.c (the server code)
� greet3_manager.c (the manager code)

 � Makefile
 � README.

If you cannot find the Greet3 example source files in the above directory, consult your systems
programmer to find where they are located in your system.

 Chapter 2. Extending the Greet Application 97

The IDL file is called greet3.idl for this example. To avoid any potential conflicts with other instances of
the same Greet3 example and ensure that you are running a unique instance, you should generate your
own interface UUID using the UUID Generator and replace the interface UUID in the IBM-supplied Greet3
IDL file with it.

This example includes an ACF file which specifies that the automatic binding method is to be used.

Modifying the Greet Code

To use automatic binding handles for the Greet client, make the following changes to the Greet client
code:

1. Specify the auto_handle attribute in greet3.acf (or USERPRFX.ACF(GREET3) if you are using a
PDS). Note that the explicit binding handle must be removed from the IDL file for this attribute to take
effect. See the sample code in Figure 80.

[auto_handle] interface greet
{
}

Figure 80. ACF File for the Greet3 Application — auto_handle

2. Remove the primitive binding handle h from the IDL file, greet3.idl (or USERPRFX.IDL(GREET3) if
you are using a PDS). Your IDL file should look similar to Figure 81.

[
uuid(2@924413-4143-19ea-a6e@-@@@@dce12345),
version(1.@)
]

/" This operation has no binding handle parameter,
therefore it uses automatic binding "/

interface greet
{

const short int STR_SZ=128;

void greet_rpc (
 [in] char client_greeting[STR_SZ],

[out] char server_reply[STR_SZ]
);
}

Figure 81. IDL File for the Greet3 Application — Using Automatic Binding

3. Compile the IDL and ACF files.

4. Remove the primitive binding handle h from greet3_manager.c (USERPRFX.GREET3.C(MANAGER)
if you use a PDS). Your manager should look similar to Figure 82 on page 99.

98 DCE Application Development Guide: Introduction and Style

#include <stdio.h>
#include "greet3.h"

void greet_rpc(char "client_greeting,
 char "server_reply)
{

printf("The client says: %s\n", client_greeting);
 fflush(stdout);

strncpy(server_reply, "Hi client !", STR_SZ);
}

Figure 82. Manager Code for the Greet3 Application — Using Automatic Binding

5. Remove or comment out all code involving binding handle h, the server entry name, and the import
operations loop in your client routine. Your client routine should be similar to Figure 83.

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include "greet3.h"

int main(int argc, char"argv[])
{
 error_status_t st, error_inq_st;
 int i, MAX_PASS;
 char reply[STR_SZ];

 setlocale(LC_ALL, "");

if (argc != 2) {
fprintf(stderr, "Usage: %s passes\n",argv[@]);

 fflush(stderr);
 exit (1);
 }

 fprintf(stdout, "\n");
 fflush(stdout);

MAX_PASS= atoi(argv [1]);

for (i=1; i <= MAX_PASS; i++) {
greet_rpc("Hello Server !", reply);
printf("The Greet Server said: %s\n", reply);

 fflush(stdout);
 }

return(@);
}

Figure 83. Client Code for Greet3 Application — Using Automatic Binding

Note the relative simplicity and compactness of the client routine in Figure 83 when compared to the
example in Figure 72 on page 92. Check the Greet3 client stub code. Note that the task of finding the
server has been transferred from the client routine to the client stub. Compile the Greet3 client stub and
source code once again.

The Greet3 server code is the same as the Greet2 server code, except that the greet2.h header file is
included instead of greet2.h. Start the Greet3 server the same way as the Greet2 server.

 Chapter 2. Extending the Greet Application 99

In this example, when you run the Greet3 client, you must supply your server name using the
RPC_DEFAULT_ENTRY environment variable, so your client knows what server to search for. To set this
variable, you should modify your home envar file to contain:

RPC_DEFAULT_ENTRY=/.:/<your_dir_name>/greet3

For other methods to set this environment variable, see “Step 5. Setting Environment Variables” on
page 53.

To start the Greet3 client in the Shell, use the following command:

greet3_client 1

To start the Greet3 client in batch, use the sample JCL shown in Figure 84.

//JOBNAME JOB (ACCOUNT)
//""
//"
//" JCL TO STARTUP THE GREET3 CLIENT
//"
//""
//GREET3CL EXEC PGM=GREET3CL,PARM='POSIX(ON)/ 1'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET3.LOAD,DISP=SHR

Figure 84. Greet3 Client Start up JCL

Adding Multiple Object Types

Until now, you have used a single operation in the Greet manager routine. You can define more than one
operation for your interface and have it run based on object types. For example, suppose there are ten
printers at your location, numbered PRINTER1 through PRINTER10, that correspond to objects. Say half
are line printers, and half are laser printers. You could write a print interface with two operations or
implementations: one for the laser printers and one for the line printers. The two operations would
correspond to the object types. DCE enables you to invoke one of the two implementations of the print
interface depending on the object type that is registered with the RPC runtime. See “Assigning Types to
Objects” section in the z/OS DCE Application Development Guide: Core Components for more
information on objects and object types.

In this next example, you apply some of the object-oriented features of DCE to the Greet application. You
redefine the Greet interface to include three object types that correspond to three languages used in the
Greet communication exchange. That is, the greetings that are exchanged will be in one of the three
languages (or object types) depending on the nationality (or object). In this example, the languages are:

 � English
 � French
 � Spanish.

There are also seven nationalities, each of which corresponds to an object. The seven nationalities (or
objects) are:

 � Canadian
 � British
 � American
 � French

100 DCE Application Development Guide: Introduction and Style

 � Belgian
 � Mexican
 � Spanish.

In the example, the user specifies nationality or object using a nationality code. Based on the nationality
code, one of the three Greet interface implementations is invoked. This is set up using a series of
rpc_object_set_type() calls to map the object to its object type. At run time, the Greet implementation
corresponding to the type is invoked. Following is the mapping of objects to the object type in this
example.

Object Type Object
English Canadian
English American
English British
French French
French Belgian
Spanish Spanish
Spanish Mexican

You can find the source code for this version of the Greet example in the /usr/lpp/dce/examples/greet4
directory. The source files supplied with z/OS DCE for this example are as follows:

� greet4.idl (the IDL file)
� greet4_client.c (the client code)
� greet4_server.c (the server code)
� greet4_manager.c (the manager code)

 � Makefile
 � README.

If you cannot find the Greet4 example source files in the above directory, consult your systems
programmer to find where they are located in your system.

To avoid any potential conflicts with other instances of the same Greet4 example and ensure that you are
running a unique instance, you should generate your own interface UUID using the UUID Generator and
replace the interface UUID in the IBM-supplied Greet4 IDL file with it.

In this example, explicit binding handling is used. This example demonstrates the flexibility you have
when using explicit binding handles. Because this version of Greet uses CDS and DCE Host Daemon,
you need to make the following changes to the version of the Greet application you created in “Using the
Name Service Interface” on page 86.

1. IDL file: Define the seven object UUID string constants.

2. Manager: Code the three implementations of the Greet Interface and the corresponding Entry Point
Vectors (EPV).

3. Server: Declare and generate the necessary object and type UUIDs. Map the objects to the correct
object type, registering the interfaces to the RPC runtime and the DCE Host Daemon.

4. Client: Declare and generate the required object UUIDs and make the RPC call.

 Chapter 2. Extending the Greet Application 101

Modifying the Greet IDL File

Figure 85 shows the IDL file for the Greet application. Here you add seven constant character strings
corresponding to the object UUIDs for the seven nationalities. See reference key �1�. You derive the
seven character strings by running the UUIDGEN utility with the number_of_uuid_strings argument set to 7.
Enter the following command in either the Shell or TSO/E environment:

uuidgen -n 7

Copy the seven UUID strings that are output to the screen into the IDL file for your application. These
UUIDs are unique throughout DCE because they are generated using UUIDGEN. After modifying your IDL
file, compile it using the IDL compiler as in “5. Compiling the Greet Interface with the IDL Compiler” on
page 61, but include the no_mepv IDL compiler option.

With this option, the IDL compiler does not generate a manager entry point vector (EPV) in the server
stub. In this Greet example, you specify three manager EPVs, {greet_english}, {greet_french}, and
{greet_spanish} in the Greet manager code. Each EPV corresponds to exchanging the greeting in a
different language. In the Greet server, you register all three manager EPVs to the RPC runtime along
with the Greet interface specifier, greet_v1_0_s_ifspec. All of this, plus a series of
rpc_object_set_type() calls in the server code enables the server to determine which operation it runs
when the Greet client makes the greet_rpc() remote call. Note that in the Greet4 client code, the remote
procedure call name does not need to change for a different operation to run. The server determines
which of the three operations it runs based on the object UUID specified in the binding handle from the
client’s RPC, by mapping greet_rpc() to one of the three EPVs.

In previous Greet examples, you entered null for the manager EPV field when you registered the Greet
interface. In those cases, the RPC runtime searched and found the manager EPV generated in the server
stub.

The seven string UUID constants are defined in the client and the server routines by including the header
file that is generated.

[
uuid(2@975713-4143-19ea-a6e@-@@@@dce12345),
version(1.@)
]

interface greet
{
const short int STR_SZ=128;

const char "CANADIAN_OBJECT = "d58ab1@8-b3c6-11ca-891c-c9c2d4ff3b52"; ──┐
const char "BELGIAN_OBJECT = "d58ab2@8-b3c6-11ca-891c-c9c2d4ff3b52"; │
const char "FRENCH_OBJECT = "d58ab3@8-b3c6-11ca-891c-c9c2d4ff3b52"; │
const char "AMERICAN_OBJECT = "d58ab4@8-b3c6-11ca-891c-c9c2d4ff3b52"; │ �1�
const char "BRITISH_OBJECT = "d58ab5@8-b3c6-11ca-891c-c9c2d4ff3b52"; │
const char "MEXICAN_OBJECT = "d58ab6@8-b3c6-11ca-891c-c9c2d4ff3b52"; │
const char "SPANISH_OBJECT = "d58ab7@8-b3c6-11ca-891c-c9c2d4ff3b52"; ──┘

void greet_rpc (
 [in] handle_t h,
 [in] char client_greeting[STR_SZ],

[out] char server_reply[STR_SZ]
);

}

Figure 85. Greet4 IDL File — for Multiple Object Types

102 DCE Application Development Guide: Introduction and Style

Modifying the Greet4 Manager

Figure 86 shows the three implementations of the Greet interface in English, French, and Spanish. The
operation is the same as before, only now it takes place in the three languages instead of one. It is
necessary to define an EPV corresponding to each implementation.

The EPVs in the Greet example are identified by the following reference keys:

�1� greet_v1_@_english

�2� greet_v1_@_french

�3� greet_v1_@_spanish

Modify the Greet4 manager routine as shown in Figure 86.

#include <stdio.h>
#include "greet4.h"

/" English "/

void greet_english(handle_t h,
 char "client_greeting,
 char "server_reply)
{

printf("The client says: %s\n", client_greeting);
 fflush(stdout);

strncpy(server_reply, "Hi client !", STR_SZ);
}

globaldef greet_v1_@_epv_t greet_v1_@_english = {greet_english}; �1�

/" French "/

void greet_french(handle_t h,
 char "client_greeting,
 char "server_reply)
{

printf("Le client parle: %s\n", client_greeting);
 fflush(stdout);

strncpy(server_reply, "Bonjour client !", STR_SZ);
}

globaldef greet_v1_@_epv_t greet_v1_@_french = {greet_french}; �2�

/" Spanish "/

void greet_spanish(handle_t h,
 char "client_greeting,
 char "server_reply)
{

printf("El cliente dice: %s\n", client_greeting);
 fflush(stdout);

strncpy(server_reply, "Buenas Dias client !", STR_SZ);
}

globaldef greet_v1_@_epv_t greet_v1_@_spanish = {greet_spanish}; �3�

Figure 86. Greet4 Manager — for Multiple Object Types

 Chapter 2. Extending the Greet Application 103

Modifying the Greet4 Server

The modifications you make to the Greet4 server routine in Figure 87 on page 105 are explained with the
following reference keys:

�1� Declare the three EPVs, the three type UUIDs, seven object UUIDs, and a vector of object UUIDs
required for this application.

�2� Generate three type UUIDs corresponding to the three different languages using the uuid_create()
function.

�3� Generate seven object UUIDs from the object strings you defined in the IDL file. Each object UUID
corresponds to the seven nationalities.

�4� Register the Greet4 server interface three times, once for each object type UUID and the
corresponding EPV. With only one object type in the past examples, you registered nulls for both
the object type UUID and EPV.

�5� Call the rpc_object_set_type() routine seven times to map each of the seven objects (or
nationalities) to one of the three object types (or languages).

�6� Create a vector of seven object UUIDs, which is registered in the local EPM and exported to CDS at
server start up.

�7� Modify the rpc_ep_register() call, which registers the end point to the DCE Host Daemon to include
the vector of object UUIDs.

�8� Modify the rpc_ns_binding_export() call, which exports the binding vector to the namespace to also
include the vector of object UUIDs.

�9� Similarly, modify the rpc_ns_binding_unexport() and rpc_ep_unregister() routines to include the
vector of object UUIDs.

In this scenario, the object UUIDs generated in the client and server (from the character string constants
declared in the IDL file) are the link to the Greet4 implementation that is invoked. Linking is done by the
rpc_object_set_type(), which maps the object UUID to the object type UUID. The type UUID is linked to
the correct EPV corresponding to the implementation when the interface is registered. Note that the
interface is registered three times to register each type UUID and its corresponding EPV.

In the previous versions of Greet, there was no need to assign object types because there was only one
manager implementation. In those instances, the null object and type UUIDs were used when registering
the Greet server interface and the endpoint. Also, the null binding vector was exported to the CDS
namespace.

104 DCE Application Development Guide: Introduction and Style

#pragma runopts(stack(12K,4K,ANY,KEEP))

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include <dce/uuid.h>
#include <dce/exc_handling.h>
#include "greet4.h"

#define MAX_CONCURRENT_CALLS 5

/" The server declares the manager EPVs defined in the
manager.c module. There are three EPVs in this example,one
for each operation TYPE coded in the manager routine. "/

extern greet_v1_@_epv_t greet_v1_@_english; ──┐
extern greet_v1_@_epv_t greet_v1_@_french; │ �1�
extern greet_v1_@_epv_t greet_v1_@_spanish; ──┘

/" In the first part of the main function, the server assigns
its name (read in as an input parameter) to variable entry_name.
The rpc_network_is_protseq_valid function checks that its argument
specifies a protocol sequence that is supported on its host
both by the runtime library and the operating system. "/

int main (int argc, char "argv[])
{
 rpc_binding_vector_p_t bvec;
 dce_error_string_t error_text;
 unsigned long st;
 int error_inq_st;
 idl_boolean validfamily;
 idl_char "string_binding;
 char "entry_name;
 int i;

uuid_t uuid_english, uuid_french, uuid_spanish; ──┐
uuid_t canadian, british, american, french, │

belgian, mexican, spanish; │
typedef struct { │

 unsigned32 count; │ �1�
 uuid_t "uuid[7]; │
 } UUID_VECTOR; │
 UUID_VECTOR obj_uuids; │
 ──┘
 setlocale(LC_ALL, "");

if (argc != 2) {
fprintf(stderr, "Usage: %s <entry_name>\n", argv[@]);

 fflush(stderr);
 exit(1);
 }

entry_name = argv[1];

validfamily = rpc_network_is_protseq_valid("ncadg_ip_udp", &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot check protocol sequence - %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

Figure 87 (Part 1 of 6). Greet4 Server Code — Modified for Multiple Object Types

 Chapter 2. Extending the Greet Application 105

 if (!validfamily) {
fprintf(stderr, "Protocol sequence is not valid\n");

 fflush(stderr);
 exit(1);
 }

/" Calling rpc_server_use_protseq to obtain an endpoint
on which to listen "/

rpc_server_use_protseq("ncadg_ip_udp", MAX_CONCURRENT_CALLS, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot use protocol sequence - %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" create 3 uuids....english, french, spanish "/
/" one for each type "/

 uuid_create(&uuid_english, &st); ──┐
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot create UUID - %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │
 uuid_create(&uuid_french, &st); │

if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │ �2�
fprintf(stderr, "Cannot create UUID - %s\n", error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │
 uuid_create(&uuid_spanish, &st); │

if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot create UUID - %s\n",error_text); │

 fflush(stderr); │
 exit(1); ──┘
 }

/" generate seven object uuids from object strings defined "/ ──┐
/" in idl file "/ │

 │
 uuid_from_string(CANADIAN_OBJECT,&canadian, &st); │
 uuid_from_string(BRITISH_OBJECT,&british, &st); │ �3�
 uuid_from_string(AMERICAN_OBJECT,&american, &st); │
 uuid_from_string(FRENCH_OBJECT,&french, &st); │
 uuid_from_string(BELGIAN_OBJECT,&belgian, &st); │
 uuid_from_string(MEXICAN_OBJECT,&mexican, &st); │
 uuid_from_string(SPANISH_OBJECT,&spanish, &st); ──┘

Figure 87 (Part 2 of 6). Greet4 Server Code — Modified for Multiple Object Types

106 DCE Application Development Guide: Introduction and Style

/" Calling rpc_server_register_if to register its interface with ──┐
the RPC runtime by supplying its interface specifier and EPV. │
Must be called three times, once for each TYPE - │
English, French, and Spanish "/ │

 │
 rpc_server_register_if(greet_v1_@_s_ifspec, &uuid_english, │

(rpc_mgr_epv_t) &greet_v1_@_english, &st); │
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot register interface - %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │
 rpc_server_register_if(greet_v1_@_s_ifspec, &uuid_french, │

(rpc_mgr_epv_t) &greet_v1_@_french, &st); │ �4�
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot register interface - %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │
 rpc_server_register_if(greet_v1_@_s_ifspec, &uuid_spanish, │

(rpc_mgr_epv_t) &greet_v1_@_spanish, &st); │
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot register interface - %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } ──┘

 rpc_object_set_type(&canadian,&uuid_english,&st); ──┐
if (st != error_status_ok) { │

 dce_error_inq_text(st, error_text &error_inq_st); │
fprintf(stderr, "Cannot set object type - %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │
 rpc_object_set_type(&british,&uuid_english,&st); │

if (st != error_status_ok) { │
 dce_error_inq_text(st, error_text, error_inq_st); │ �5�

fprintf(stderr, "Cannot set object type - %s\n",error_text); │
 fflush(stderr); │
 exit(1); │
 } │
 │
 rpc_object_set_type(&american,&uuid_english,&st); │

if (st != error_status_ok) { │
 dce_error_inq_text(st, error_text, error_inq_st); │

fprintf(stderr, "Cannot set object type - %s\n",error_text); │
 fflush(stderr); │
 exit(1); │
 } ──┘

Figure 87 (Part 3 of 6). Greet4 Server Code — Modified for Multiple Object Types

 Chapter 2. Extending the Greet Application 107

 rpc_object_set_type(&french,&uuid_french,&st); ──┐
if (st != error_status_ok) { │

 dce_error_inq_text(st, error_text, error_inq_st); │
fprintf(stderr, "Cannot set object type - %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │
 rpc_object_set_type(&belgian,&uuid_french,&st); │

if (st != error_status_ok) { │
 dce_error_inq_text(st, error_text, error_inq_st); │

fprintf(stderr, "Cannot set object type - %s\n",error_text); │
 fflush(stderr); │
 exit(1); │
 } │
 │ �5�
 rpc_object_set_type(&mexican,&uuid_spanish,&st); │

if (st != error_status_ok) { │
 dce_error_inq_text(st, error_text, error_inq_st); │

fprintf(stderr, "Cannot set object type - %s\n",error_text); │
 fflush(stderr); │
 exit(1); │
 } │
 │
 rpc_object_set_type(&spanish,&uuid_spanish,&st); │

if (st != error_status_ok) { │
 dce_error_inq_text(st, error_text, error_inq_st); │

fprintf(stderr, "Cannot set object type - %s\n",error_text); │
 fflush(stderr); │
 exit(1); │
 } ──┘

/" Calling rpc_server_inq_bindings to obtain a vector of
binding handles that can be used to register the server's
endpoint. The server then obtains, prints, and frees a
string binding "/

 rpc_server_inq_bindings(&bvec, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot inquire bindings - %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

printf("Server %s bindings:\n", entry_name);
 fflush(stdout);

for (i = @; i < bvec->count; i++) {
 rpc_binding_to_string_binding(bvec->binding_h[i],
 &string_binding, &st);

printf("%s\n", (char ")string_binding);
 fflush(stdout);
 rpc_string_free(&string_binding, &st);

 }

Figure 87 (Part 4 of 6). Greet4 Server Code — Modified for Multiple Object Types

108 DCE Application Development Guide: Introduction and Style

/" Define the array of object uuids for the seven objects "/ ──┐
 │
 obj_uuids.count = 7; │

obj_uuids.uuid[@] = &canadian; │
obj_uuids.uuid[1] = &british; │
obj_uuids.uuid[2] = &american; │ �6�
obj_uuids.uuid[3] = &french; │
obj_uuids.uuid[4] = &belgian; │
obj_uuids.uuid[5] = &mexican; │
obj_uuids.uuid[6] = &spanish; ──┘

/" The server endpoint is registered in the local Endpoint Map "/

 rpc_ep_register(greet_v1_@_s_ifspec, bvec,
(uuid_vector_t ") &obj_uuids, �7�
(unsigned_char_p_t) "greet version 1.@ server", &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register to EPM: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" export the binding vector the runtime gave us to the namespace "/

 rpc_ns_binding_export(rpc_c_ns_syntax_dce, entry_name,
 greet_v1_@_s_ifspec, bvec,

(uuid_vector_t ") &obj_uuids, &st); �8�
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot export binding vector: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" To begin listening for RPC requests, the server calls
rpc_server_listen. This call is placed within the TRY of a
TRY, CATCH_ALL, ENDTRY sequence, so that if the server receives
a signal while it is listening, it can unregister its interface
and its endpoint before it exits. "/

 TRY {
printf("Server %s is listening...\n", entry_name);

 fflush(stdout);

Figure 87 (Part 5 of 6). Greet4 Server Code — Modified for Multiple Object Types

 Chapter 2. Extending the Greet Application 109

 rpc_server_listen(MAX_CONCURRENT_CALLS, &st);
if (st != error_status_ok)

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Error: %s\n",error_text);

 fflush(stderr);
 }

 CATCH_ALL {
 CLEANUP:

/" unexport binding vector from namespace --
not usually done for a persistent server "/

fprintf(stdout, "Server %s unexporting\n", entry_name);
 fflush(stdout);

 rpc_ns_binding_unexport(rpc_c_ns_syntax_dce, entry_name,
greet_v1_@_s_ifspec, (uuid_vector_t ") &obj_uuids, &st); �9�

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot unexport binding vector: %s\n",

 error_text);
 fflush(stderr);
 }

printf("Unregistering endpoint \n");
 fflush(stdout);
 rpc_ep_unregister(greet_v1_@_s_ifspec, bvec,

(uuid_vector_p_t) &obj_uuids, &st); �9�
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot unregister endpoint: %s\n", error_text);

 fflush(stderr);
 }

 }

 ENDTRY;

return(@);
}

Figure 87 (Part 6 of 6). Greet4 Server Code — Modified for Multiple Object Types

Modifying the Greet4 Client

The modifications you make to the Greet client routine in Figure 88 on page 111 are explained by the
following reference keys:

�1� Declare a new variable nationality to store the nationality code that is passed in as a parameter
during client start up. Also declare a variable obj_uuid of type uuid_t.

�2� Check the validity of the nationality code, and depending on the nationality code, create an object
UUID from the string constant defined in the IDL file. The if/else if block performs this check.

�3� Import the binding for the compatible Greet server using the correct object UUID based on the
nationality.

�4� Add a series of if statements to make the Greet RPC call. These if statements are required to pass
the Greet client’s greeting to the server in the proper language.

110 DCE Application Development Guide: Introduction and Style

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include "greet4.h"

int main(int argc, char"argv[])
{
 handle_t h;
 dce_error_string_t error_text;
 unsigned long st;
 int error_inq_st;
 idl_char "string_binding;
 int i, MAX_PASS;

char reply[STR_SZ], "server_name, nationality; �1�
 rpc_ns_import_handle_t import_context;
 uuid_t obj_uuid; �1�

 setlocale(LC_ALL, "");

/" add extra argument to indicate nationality "/

if (argc != 4) {
fprintf(stderr, "Usage: %s <server_entry> <passes> <nationality>\n",

 argv[@]);
 fflush(stderr);
 exit (1);
 }

server_name = argv[1];
nationality = "argv[3]; �1�

 ──┐
if (nationality == 'C') │

uuid_from_string (CANADIAN_OBJECT, &obj_uuid, &st); │
 │

else if (nationality == 'B') │
uuid_from_string (BRITISH_OBJECT, &obj_uuid, &st); │

 │
else if (nationality == 'A') │

uuid_from_string (AMERICAN_OBJECT, &obj_uuid, &st); │
 │

else if (nationality == 'F') │
uuid_from_string (FRENCH_OBJECT, &obj_uuid, &st); │

 │ �2�
else if (nationality == 'Q') │

uuid_from_string (BELGIAN_OBJECT, &obj_uuid, &st); │
 │

else if (nationality == 'M') │
uuid_from_string (MEXICAN_OBJECT, &obj_uuid, &st); │

 │
else if (nationality == 'S') │

uuid_from_string (SPANISH_OBJECT, &obj_uuid, &st); │
 │
 else { │

fprintf(stderr, "Nationality code is incorrect."); │
 fflush(stderr); │
 exit(1); │
 } ──┘

Figure 88 (Part 1 of 4). Greet4 Client Code — Modified for Multiple Object Types

 Chapter 2. Extending the Greet Application 111

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot convert string to object uuid: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" import compatible server bindings from the namespace "/
 rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,
 server_name, greet_v1_@_c_ifspec,

&obj_uuid, &import_context, &st); �3�
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot begin importing binding: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" sift through bindings and choose the first one over udp "/
 /"""

For this release, RPC only works over UDP.
 """/

while (1) {

rpc_ns_binding_import_next(import_context, &h, &st);
if (st == rpc_s_no_more_bindings) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot find binding over udp: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

rpc_binding_to_string_binding(h, &string_binding, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot convert binding to string binding: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" out of curiosity, print the binding "/
if (strstr(string_binding, "ncadg_ip_udp") != @) {

fprintf(stdout, "Client bound to server %s at %s\n",
 server_name, string_binding);
 fflush(stdout);
 rpc_string_free(&string_binding, &st);
 break;
 }

Figure 88 (Part 2 of 4). Greet4 Client Code — Modified for Multiple Object Types

112 DCE Application Development Guide: Introduction and Style

 rpc_string_free(&string_binding, &st);
 }

/" end the binding import lookup loop "/
 rpc_ns_binding_import_done(&import_context, &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot end binding import: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

MAX_PASS = atoi(argv [2]);

if (nationality == 'C') { ──┐
for (i=1; i <= MAX_PASS; i++) { │

greet_rpc(h, "Hello Server !", reply); │
printf("The Greet Server said: %s\n", reply); │

 fflush(stdout); │
 } │
 return(@); │
 } │
 │

if (nationality == 'B') { │
for (i=1; i <= MAX_PASS; i++) { │

greet_rpc(h, "Hello Server !", reply); │
printf("The Greet Server said: %s\n", reply); │

 fflush(stdout); │
 } │
 return(@); │
 } │
 │

if (nationality == 'A') { │
for (i=1; i <= MAX_PASS; i++) { │

greet_rpc(h, "Hello Server !", reply); │
printf("The Greet Server said: %s\n", reply); │ �4�

 fflush(stdout); │
 } │
 return(@); │
 } │
 │

if (nationality == 'F') { │
for (i=1; i <= MAX_PASS; i++) { │

greet_rpc(h, "Bonjour Server !", reply); │
printf("Le Greet Server dit: %s\n", reply): │

 fflush(stdout); │
 } │
 return(@); │
 } │
 │

if (nationality == 'Q') { │
for (i=1; i <= MAX_PASS; i++) { │

greet_rpc(h, "Bonjour Server !", reply); │
printf("Le Greet Server dit: %s\n", reply); │

 fflush(stdout); │
 } │
 return(@); ──┘
 }

Figure 88 (Part 3 of 4). Greet4 Client Code — Modified for Multiple Object Types

 Chapter 2. Extending the Greet Application 113

 ──┐
if (nationality == 'M') { │

for (i=1; i <= MAX_PASS; i++) { │
greet_rpc(h, "Ola Server !", reply); │
printf("El Greet Server dice: %s\n", reply); │

 fflush(stdout); │
 } │
 return(@); │
 } │ �4�
 │

if (nationality == 'S') { │
for (i=1; i <= MAX_PASS; i++) { │

greet_rpc(h, "Ola Server !", reply); │
printf("El Greet Server dice: %s\n", reply); │

 fflush(stdout); │
 } │
 return(@); ──┘
 }

}

Figure 88 (Part 4 of 4). Greet4 Client Code — Modified for Multiple Object Types

Starting the Greet4 Server and Client

As noted in “Starting the Greet2 Server and Client” on page 94, you must log into DCE and ensure that
DCEKERN is running and all daemons are running in your cell prior to starting the Greet server. You can
start up the Greet4 server the same as you did the Greet2 server, but you should change the server entry
name to /.:/<your_dir_name>/greet4 in this example.

After you have verified your server is in listening mode, you can start your client application. To start the
Greet4 client in the Shell, use the following command:

greet4_client /.:/<your_dir_name>/greet4 3 S'

To start the Greet4 client in batch, use the sample JCL shown in Figure 89.

//JOBNAME JOB (ACCOUNT)...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET4 CLIENT
//"
//"""
//GREET4CL EXEC PGM=GREET4CL,PARM='POSIX(ON)/ /.:/<your_dir_name>/greet4 3 S' �1�
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//SYSUDUMP DD SYSOUT="
//STEPLIB DD DSN='USERPRFX.GREET4.LOAD',

Figure 89. Starting the Greet4 Client with Multiple Object Types

In this example, ‘S’ is passed in as an input parameter to represent Spanish. This is denoted by reference
key �1�. You can modify this to any of the six other nationality codes (C, A, B, F, Q, or M) and see how
your client and server output changes.

Your output should appear similar to Figure 90 on page 115 when the nationality code is ‘S’.

114 DCE Application Development Guide: Introduction and Style

Client bound to server /.:/<your_dir_name>/greet4 at d58ab7@8-b3c6-11ca-891c-c9c2d4ff3b52@ncadg_ip_udp:9.21.6.97
El Greet Server dice: Buenas Dias client !
El Greet Server dice: Buenas Dias client !
El Greet Server dice: Buenas Dias client !

Figure 90. Greet4 Client Output — for Multiple Object Types

 Chapter 2. Extending the Greet Application 115

116 DCE Application Development Guide: Introduction and Style

Chapter 3. Securing the Greet Application

This chapter describes two extensions to the Greet application (described in “Using the Name Service
Interface” on page 86) to secure it using the DCE Security services. The examples include the following:

� Greet with name based authorization (through Authenticated RPC).
� Greet with Access Control List (ACL) based authorization.

Prior to running these applications, you should have successfully run the Greet tutorial applications
contained in “Creating a Sample Application: GREET” on page 58 and Chapter 2, “Extending the Greet
Application” on page 75. In addition, you should read Chapter 5, “Security” on page 163 to gain an
understanding of DCE security.

For general information on using Authenticated RPC in your applications, refer to the “Security and RPC:
Using Authenticated RPC” section in the z/OS DCE Application Development Guide: Core Components.

Greet with Name-Based Authorization

This application extends the Greet application referenced in “Using the Name Service Interface” on
page 86. The extensions are designated by reference keys in the following sections.

Finding the Source Code for this Example

You can find the source code for this version of the Greet example in the /usr/lpp/dce/examples/greet5
directory. The source files supplied with z/OS DCE for this example are as follows:

� greet5.idl (the IDL file)
� greet5_client.c (the client code)
� greet5_server.c (the server code)
� greet5_manager.c (the manager code)

 � Makefile
 � README.

If you cannot find the Greet5 example source files in the above directory, consult your systems
programmer to find where they are located in your system.

The IDL file content is the same as in “Using the Name Service Interface” on page 86, except for the
interface UUID. It is called greet5.idl for this example. To avoid any potential conflicts with other
instances of the same Greet5 example and ensure that you are running a unique instance, you should
generate your own interface UUID using the UUID Generator and replace the interface UUID in the
IBM-supplied Greet5 IDL file with it.

Prior to running this example, you need to change all occurrences of your_cell_name in the Greet5
Manager example code to your local cell name.

 Copyright IBM Corp. 1994, 2001 117

Greet Server (Main)

Refer to Figure 91 on page 119 to see the following changes made to the Greet server code to secure
the application:

�1� The server defines a key table (keytab) file, designated by KEYFILE, where its keys are stored in
encrypted form. When the Greet server program runs, the DCE runtime obtains the server’s key,
(that is, its password) from this file. Normally, the DCE Administrator creates and populates the
keytab file as shown in “Creating a Key Table File for the Greet5 Server” on page 128. The file
designated by KEYFILE is used in the sec_key_mgmt_get_key() and
rpc_server_register_auth_info() calls, so the DCE runtime knows where to obtain the key for this
server application when it is registering the Greet server’s authentication information. Using a keytab
file avoids having a noninteractive DCE principal from having to supply its password.

�2� New declarations are made in order to use DCE security API calls.

�3� The server application sets up its own login context by logging in as a user-supplied DCE principal,
and discarding the login context of the user that invokes it. You must pass the DCE principal name
to the server application as a start up argument, so it runs as that principal. The principal name is
assigned to the variable dce_login in the server code. A DCE account for this principal (with
permission to register its interface to DCE Host Daemon and export its bindings to the namespace)
must exist for the program to run. Consult your DCE Administrator to set it up. Note that the
expected server principal name in this example is /.../your_cell_name/greets, and this is checked in
the manager code.

�4� The server registers its authentication information to the RPC runtime, specifying its principal name
(contained in variable dce_login) and the authentication service (DCE shared-secret key
authentication) to use when authenticating incoming calls.

118 DCE Application Development Guide: Introduction and Style

#pragma runopts(stack(12K,4K,ANY,KEEP))

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include <dce/exc_handling.h>
#include <dce/sec_login.h>
#include <dce/keymgmt.h>
#include "greet5.h"

#define MAX_CONCURRENT_CALLS 5
#define KEYFILE "FILE:/tmp/gkeyfile" �1�
/" Thread function definition "/

static pthread_addr_t signal_thread(pthread_addr_t arg);

/" In the first part of the main function, the server assigns
the principal name (read in as an input parameter)
to the variable dce_login. This variable is used
by the server application to set up its own context.

Its CDS name (also passed as an input parameter) is assigned to entry_name.
The rpc_network_is_protseq_valid checks that its argument
specifies a protocol sequence that is supported on its host
both by the runtime library and the operating system. "/

int main (int argc, char "argv[])
{
 rpc_binding_vector_p_t bvec;
 unsigned long st;
 int error_inq_st;
 idl_boolean validfamily;
 idl_char "string_binding;
 dce_error_string_t error_text;
 char entry_name[STR_SZ];
 int i;

/" Declarations for Security "/ ───┐
 │
 sec_login_auth_src_t auth_src; │
 sec_login_handle_t login_context; │ �2�
 char dce_login[STR_SZ]; │
 void "keydata │
 boolean32 reset_passwd; ───┘

/" Declarations for Threads "/

 pthread_t thread;
 int retval;

 setlocale(LC_ALL, "");

if (argc != 3) {
fprintf (stderr, "Usage: %s <PRINCIPAL> <SERVER ENTRY>\n", argv[@]);

 fflush(stderr);
 exit(1);
 }

 strcpy(dce_login, argv[1]);
 strcpy(entry_name, argv[2]);

Figure 91 (Part 1 of 5). Greet5 Server Code Modified for Name-Based Security

 Chapter 3. Securing the Greet Application 119

printf("Establishing login identity with security server...\n"); ──┐
 fflush(stdout); │
 │
 sec_login_setup_identity(dce_login, sec_login_no_flags, │
 &login_context, &st); │

if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot setup login identity: %s\n", error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │

/" Getting servers password from the authentication service "/ │
 sec_key_mgmt_get_key(rpc_c_authn_dce_secret,KEYFILE, │
 dce_login,@,&keydata,&st); │

if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot get key data - %s\n", error_text); │

 fflush(stderr); │
 exit(1); │
 } │ �3�
 │

sec_login_validate_identity(login_context, (sec_passwd_rec_t ") keydata, │
&reset_passwd, &auth_src, &st); │

if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot validate login identity: %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │
 sec_login_set_context(login_context, &st); │

if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot set login context: %s\n",error_text); │

 fflush(stderr); │
 exit(1); │
 } │
 │

printf("Identity established !\n"); │
 fflush(stdout); ──┘

/" Free the storage allocated for keydata "/

 sec_key_mgmt_free_key(keydata, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot free key storage: %s\n",error_text);

 exit(1);
 }

Figure 91 (Part 2 of 5). Greet5 Server Code Modified for Name-Based Security

120 DCE Application Development Guide: Introduction and Style

/" Calling rpc_server_use_all_protseqs to tell the RPC runtime to
use all supported protocol sequences "/

 rpc_server_use_all_protseqs(MAX_CONCURRENT_CALLS, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot establish protocol sequences: %s\n", error_text);

 fflush(stderr);
 exit(1);

/" Calling rpc_server_register_if to register its interface with
the RPC runtime by suppying its interface specifier "/

rpc_server_register_if(greet_v1_@_s_ifspec, NULL, NULL, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register interface - %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

/" Calling rpc_server_inq_bindings to obtain a vector of
binding handles that can be used to register the server’s
endpoint. The server then obtains, prints, and frees a
string binding "/

 rpc_server_inq_bindings(&bvec, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot inquire bindings - %s\n",error_text);

 fflush(stdout);
 exit(1);
 }

printf("Server %s bindings:\n", entry_name);
 fflush(stdout);

for (i = @; i < bvec->count; i++) {
 rpc_binding_to_string_binding(bvec->binding_h[i],
 &string_binding, &st);

printf("%s\n", (char ")string_binding);
 fflush(stdout);
 rpc_string_free(&string_binding, &st);
 }

Figure 91 (Part 3 of 5). Greet5 Server Code Modified for Name-Based Security

 Chapter 3. Securing the Greet Application 121

/" Register Authentication information with RPC runtime "/ ──┐
 │

printf("Registering Authentication info...\n"); │
 fflush(stdout); │
 rpc_server_register_auth_info(dce_login, rpc_c_authn_dce_secret, │

NULL, KEYFILE, &st); │ �4�
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot register authentication service: %s\n", │

 error_text); │
 fflush(stderr); │
 exit(1); │
 } ──┘

/" The server endpoint is registered in the local Endpoint Map "/

 rpc_ep_register(greet_v1_@_s_ifspec, bvec,
 (uuid_vector_p_t) NULL,

(unsigned_char_p_t) "greet version 1.@ server", &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register endpoint: %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

/" export the binding vector the runtime gave us to the namespace "/

 rpc_ns_binding_export(rpc_c_ns_syntax_dce, entry_name,
 greet_v1_@_s_ifspec, bvec,

(uuid_vector_t ")NULL, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot export binding vector: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" Start thread to wait for signals "/

retval = pthread_create(&thread, pthread_attr_default,
 signal_thread, NULL);

 if (!retval) {
 pthread_detach(&thread);
 else {

fprintf(stderr, "Cannot create signal thread. Server:Shutdown starting.\n");
 fflush(stdout);
 }

/" To begin listening for RPC requests, the server calls
 rpc_server_listen. "/

 if (!retval) {
fprintf("Server %s is listening...\n", entry_name);

 fflush(stdout);
 rpc_server_listen(MAX_CONCURRENT_CALLS, &st);

if (st != errot_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Error: %s\n", error_text);

 }
 }

Figure 91 (Part 4 of 5). Greet5 Server Code Modified for Name-Based Security

122 DCE Application Development Guide: Introduction and Style

/" Unregister interface and endpoints before exit "/

printf("Server %s unexporting\n", entry_name);
 fflush(stdout);
 rpc_ns_binding_unexport(rpc_c_ns_syntax_dce, entry_name,

greet_v1_@_s_ifspec, (uuid_vector_t ")NULL, &st);
printf("Unregistering endpoint \n");

 fflush(stdout);
 rpc_ep_unregister(greet_v1_@_s_ifspec, bvec,

(uuid_vector_p_t) NULL, &st);

 printf("unregistering interface\n");
 fflush(stdout);

rpc_server_unregister_if(greet_v1_@_s_ifspec, NULL, &st);

printf("Purging login context\n");
 fflush(stdout);
 sec_login_purge_context(&login_context, &st);

 return(@);
 }
 /"---"/
 /" Signal handler "/
 /"---"/

static pthread_addr_t signal_thread(pthread_addr_t arg)
 {
 sigset_t signal_set;
 int 1;
 error_status_t status;

while (true) {
 sigemptyset(&signal_set);
 sigaddset(&signal_set, SIGINT);
 sigaddset(&signal_set, SIGTERM);
 sigaddset(&signal_set, SIGHUP);

i = sigwait(&signal_set);
if (i == SIGINT || i == SIGTERM)

 break;
 }

 printf("Server:Shutdown starting.\n");
 rpc_mgmt_stop_server_listening(NULL, &status);
 pthread_exit(NULL);
 }

Figure 91 (Part 5 of 5). Greet5 Server Code Modified for Name-Based Security

Greet Server (Manager)

Refer to Figure 92 on page 124 to see the following changes made to secure the application:

Prior to processing the client RPC request, the Greet server’s manager performs a number of checks on
the client’s binding handle to authorize the remote call. These checks are all performed in the
authorize_client() procedure denoted by �1� in the figure.

�2� The authentication service specified by the client is that expected by the server (DCE shared-secret
key authentication).

�3� The protection level requested by the client is that expected by the server.

�4� The authorization service that expected by the server (name-based).

 Chapter 3. Securing the Greet Application 123

�5� The server principal name specified by the client is correct. In this example, it expects the principal
name /.../your_cell_name/greets.

�6� The client principal name specified by the client is that expected by the server. In this example, it
expects the principal name /.../your_cell_name/greetc.

The Greet server rejects the client’s RPC if any of these checks fail, and sends a rejection message back
to the client.

#include <stdio.h>
#include "greet5.h"

long authorize_client(rpc_binding_handle_t);

void greet_rpc (handle_t h,
 char "client_greeting,
 char "server_reply)
{

printf("The client says: %s\n", client_greeting);
 fflush(stdout);

if (authorize_client (h)) {
printf("Client is authorized.\n");

 fflush(stdout);
strncpy(server_reply, "Hi client !", STR_SZ);

 }

 else {
printf ("Client is NOT authorized !\n");

 fflush (stdout);
strncpy(server_reply, "You are not NOT authorized !", STR_SZ);

 }
}

long authorize_client (rpc_binding_handle_t bh) �1�
{
 rpc_authz_handle_t privs;
 char "server_princ_name;

unsigned32 protect_level, authn_svc, authz_svc, st;

 printf("Validating Client\n");
 fflush(stdout);

rpc_binding_inq_auth_client(bh, &privs, &server_princ_name,
 &protect_level, &authn_svc,
 &authz_svc, &st);

if (st != rpc_s_ok) {
fprintf(stderr, "Cannot inquire client’s authorization.\n");

 fflush(stderr);
 }

else if (authn_svc != rpc_c_authn_dce_secret) { ──┐
printf("Invalid authentication service.\n"); │ �2�

 fflush(stdout); │
 } ──┘

else if (protect_level != rpc_c_protect_level_pkt_integ) { ──┐
printf("Invalid protection level.\n"); │ �3�

 fflush(stdout); │
 } ──┘

Figure 92 (Part 1 of 2). Greet5 Manager Code Modified for Name-Based Security

124 DCE Application Development Guide: Introduction and Style

else if (authz_svc != rpc_c_authz_name) { ──┐
printf("Invalid authorization level.\n"); │ �4�

 fflush(stdout); │
 } ──┘

else if (strcmp(server_princ_name, "/.../your_cell_name/greets") != @) { ──┐
printf("Invalid server principal name %s.\n", server_princ_name); │ �5�

 fflush(stdout); │
 } ──┘

else if (strcmp((unsigned_char_t ") privs, "/.../your_cell_name/greetc") != @) { ──┐
printf("Invalid client principal name %s.\n", │

(unsigned_char_t ") privs); │ �6�
 fflush(stdout); │
 } ──┘

 else {
printf("Client is valid !\n");

 fflush(stdout);
 return(1);
 }

 return(@);
}

Figure 92 (Part 2 of 2). Greet5 Manager Code Modified for Name-Based Security

 Greet Client

In this example, the Greet client inherits its context from the user who invokes it instead of logging into
DCE with its own identity like the Greet server. Although it is possible to establish its own identity using
the same calls used in the server, a client application typically inherits its context from a user rather than
setting up its own identity. When you run the Greet client, you must login as the DCE principal
/.../your_cell_name/greetc or else the name-based authorization checking will prevent the RPC from
occurring. If you want to run as a different client principal, you must change the hardcoded authorization
check in the Greet Manager code. Refer to Figure 93 on page 126 to see the following major changes in
the Greet client code:

�1� After importing a compatible binding from the CDS namespace, the client resolves its endpoint to
obtain a full binding.

�2� It then finds the Greet server’s principal name to set authentication and authorization information for
the Greet server binding handle.

�3� This information includes the protection level, authentication service, the client’s identity, and
authorization service (which are all verified on the server side by the manager as part of the
authorization process).

Note: In this example, the leaf entry of the Greet server’s CDS name is NOT the same as the Greet
server’s principal name. For simplicity, you may code the server’s leaf CDS entry name and
principal name to be identical; however, the DCE architecture does not constrain you to keeping
them the same. If your client application does not know its server’s principal name, several
methods are available for your client to find it. The method used is up to you. This version of
Greet shows you how to find a server ’s principal name in the event that you do not know it at
client start up, or if it is not stored somewhere for easy retrieval by the client.

 Chapter 3. Securing the Greet Application 125

#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include <dce/sec_login.h>
#include "greet5.h"

int main(int argc, char"argv[])
{
 rpc_binding_handle_t h;
 dce_error_string_t error_text;
 unsigned long st;
 int error_inq_st;
 idl_char "string_binding;
 int i, MAX_PASS;
 char reply[STR_SZ], entry_name[STR_SZ];
 char "server_principal;
 rpc_ns_import_handle_t import_context;

 setlocale(LC_ALL, "");

if (argc != 3) {
fprintf(stderr, "Usage: %s <SERVER NAME> <PASSES>\n",argv[@]);

 fflush(stderr);
 exit (1);
 }

 strcpy(entry_name, argv[1]);
MAX_PASS= atoi(argv [2]);

/" Import compatible server bindings from the namespace "/

printf("Importing a binding handle....\n");
 fflush(stdout);

 rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce, entry_name,
greet_v1_@_c_ifspec, (uuid_t ")NULL,

 &import_context, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr,"Cannot begin importing binding: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

Figure 93 (Part 1 of 3). Greet5 Client Code Modified for Name-Based Security

126 DCE Application Development Guide: Introduction and Style

/" sift through bindings and choose the first one over udp "/

while (1) {

rpc_ns_binding_import_next(import_context, &h, &st);
if (st == rpc_s_no_more_bindings) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr,"Cannot find binding over udp: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" out of curiosity, print the binding "/

rpc_binding_to_string_binding(h, &string_binding, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr,"Cannot convert binding to string binding: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

printf("Client bound to server %s at %s\n",
 entry_name, string_binding);
 rpc_string_free(&string_binding, &st);

 rpc_string_free(&string_binding, &st);
 }

/" end the binding import lookup loop "/

 rpc_ns_binding_import_done(&import_context, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot end binding import: %s\n",error_text);

 fflush(stderr);
 exit(1);
 }

/" Resolve the partial binding imported from the namespace "/ ──┐
 │
printf("Resolving the partially bound handle....\n"); │

 fflush(stdout); │
 │
rpc_ep_resolve_binding (h, greet_v1_@_c_ifspec, &st); │ �1�
if (st != error_status_ok) { │

dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot resolve binding imported from CDS: %s\n", │

 error_text); │
 fflush(stderr); │
 exit(1); ──┘
 }

Figure 93 (Part 2 of 3). Greet5 Client Code Modified for Name-Based Security

 Chapter 3. Securing the Greet Application 127

 ──┐
/" Get the server principal name from the runtime "/ │

 │
printf("Getting the server principal name....\n"); │

 fflush(stdout); │
 │
rpc_mgmt_inq_server_princ_name (h, rpc_c_authn_dce_secret, │

 &server_principal, &st); │
if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │ �2�
fprintf(stderr, "Cannot get server's principal name for server %s: %s-n", │

 entry_name, error_text); │
 fflush(stderr); │
 exit(1); │
 } │
 │
printf("The server principal name is: %s\n", server_principal); │

 fflush(stdout); ──┘

/" Set the authorization information "/ ──┐
 │
printf("Setting the Auth info....\n"); │

 fflush(stdout); │
 │
rpc_binding_set_auth_info (h, server_principal, │

 rpc_c_protect_level_pkt_integ, │
 rpc_c_authn_dce_secret, NULL, │ �3�
 rpc_c_authz_name, &st); │
if (st != error_status_ok) { │
dce_error_inq_text(st, error_text, &error_inq_st); │
fprintf(stderr, "Cannot set security authorization for server %s: %s\n", │

 entry_name, error_text); │
 fflush(stderr); │
 exit(1); │
 } ──┘

 rpc_string_free(&server_principal, &st);

/" Make the remote call "/

for (i=1; i <= MAX_PASS; i++) {
greet_rpc(h, "Hello Server !", reply);
printf("The Greet Server said: %s\n", reply);

 fflush(stdout);
 }

return(@);
}

Figure 93 (Part 3 of 3). Greet5 Client Code Modified for Name-Based Security

Creating a Key Table File for the Greet5 Server

This application uses a local keytab file to store the keys (essentially the passwords) of the server
principal. Prior to starting the Greet server application, you need to create this Key Table file using the
following dcecp subcommand (DCECP in TSO/E):

dcecp -c keytab create greets -att {{storage /tmp/gkeyfile}
{data {greets plain 1 greets}}}

This subcommand sets the password for the server principal to greets. The password in the keytab file
must be the same as the password stored in the Security Registry for that principal account, or else the
server will be unable to login to DCE Security. For specific information about the above command, consult
the z/OS DCE Administration Guide. The above subcommand creates a key table file with the name
gkeyfile in the directory /tmp. This name is hardcoded in the server program, so if you decide to change
the name of the local keytab file, you must change it in your server program as well.

128 DCE Application Development Guide: Introduction and Style

Note: Normally, there is a key management thread created in the server to periodically update the key in
long running servers. For simplicity, this has not been added into this example.

Starting the Greet5 Application

You can use the same IDL file used in the version of Greet contained in “Using the Name Service
Interface” on page 86. Compile the IDL file and the C source code (contained in “Finding the Source
Code for this Example” on page 117), and link-edit the Greet client and server applications as before.

Prior to starting the Greet application, you must create two accounts, one for the Greet client principal,
greetc, and one for the Greet server principal, greets, using the dcecp command in the Shell or DCECP
in TSO/E. Set the permissions to carry out operations on the namespace for these principals using the
dcecp acl command in the Shell or DCECP ACL in TSO/E. As before, the server principal must have
insert permission to export to the CDS namespace directory <your_dir_name> and the insert or server
permission to DCE Host Daemon. The client principal only requires read permission.

To start the Greet5 server in the Shell, in background mode, use the following commands:

export _EUV_SEC_KRB5CCNAME_FILE="/<your_home_dir>/krb5ccname1"
greet5_server greets /.:/<your_dir_name>/greet5 &

To start up the Greet5 server in batch, use the example JCL shown in Figure 94.

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET5 SERVER
//"
//"""
//GREET5SR EXEC PGM=GREET5SR,PARM='POSIX(ON),
 ENVAR(''_EUV_SEC_KRB5CCNAME_FILE=/<your_home_dir>/krb5ccname1''),

/ greets /.:/<your_dir_name>/greet5'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//CEEDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET5.LOAD,DISP=SHR

Figure 94. Starting the Greet5 Server in Batch

After ensuring the Greet5 server is in listening mode, you need to log in to DCE as principal greetc prior
to running the Greet5 client. The Greet5 client inherits your login context.

To run the Greet5 client in the Shell, use the following commands:

export _EUV_SEC_KRB5CCNAME_FILE="/<your_home_dir>/krb5ccname"
greet5_client /.:/<your_dir_name>/greet5 <passes>

To run the Greet5 client in batch, use the example JCL shown in Figure 95 on page 130.

 Chapter 3. Securing the Greet Application 129

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET5 CLIENT
//"
//"""
//GREET5CL EXEC PGM=GREET5CL,PARM='POSIX(ON)/ /.:/<your_dir_name>/greet5 <passes>'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//CEEDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET5.LOAD,DISP=SHR

Figure 95. Starting the Greet5 Client in Batch

Greet5 Server Output

You will see the following output when you run the Greet5 server program:

� If the Greet5 server accepts the clients credentials and allows the remote call:

Establishing login identity with security server...
Identity established !
Server /.:/<your_dir_name>/greet5 bindings:
ncadg_ip_udp:9.21.22.97 [1312]
ncacn_ip_tcp:9.21.22.97 [1668]
Registering Auth info...
Server /.:/<your_dir_name>/greet5 is listening...
The client says: Hello Server !
Validating Client
Client appears valid !
Client is authorized.
The Greet server said: Hi Client!

Figure 96. Greet5 Server Output — If Client Is Accepted

� If the Greet5 server rejects the client’s credentials and disallows the remote call:

The client says: Hello Server !
Validating Client
Invalid client principal name /.../your_cell_name/Invalid_Principal.
Client is NOT authorized !

Figure 97. Greet5 Server Output — If Client Rejected

� If the Greet5 server is stopped:

Server /.:/<your_dir_name>/greet5 unexporting
Unregistering endpoint
Unregistering interface
Purging login context

Figure 98. Greet5 Server Output — When Server Is Stopped

130 DCE Application Development Guide: Introduction and Style

Greet5 Client Output

You will see the following Greet5 client output:

� On a successful remote call to the Greet5 server:

Importing a binding handle....
Client bound to server /.:/<your_dir_name>/greet5 at ncadg_ip_udp:9.21.22.97
Resolving the partially bound handle....
Getting the server principal name....
The server principal name is: /.../your_cell_name/greets
Setting the Auth info....
The Greet Server said: Hi client !

Figure 99. Greet5 Client Output — On Successful Remote Call

� On an unsuccessful remote call to the Greet5 server:

Importing a binding handle....
Client bound to server /.:/<your_dir_name>/greet5 at ncadg_ip_udp:9.21.22.97
Resolving the partially bound handle....
Getting the server principal name....
The server principal name is: /.../your_cell_name/greets
Setting the Auth info....
The Greet Server said: You are NOT authorized !

Figure 100. Greet5 Client Output — On Unsuccessful Remote Call

Greet with EPAC-based Authorization

This example adds a pre-OSF DCE 1.1 level (pre-OS/390 DCE) Access Control List (ACL) manager to
the last Greet example. See the example discussed in Appendix A, “A Sample Application” on page 271
for an illustration of how to write a DCE 1.1 (z/OS DCE) ACL manager. The ACL manager contains
procedures that control a client’s access to the Greet server’s manager routines. An ACL is a list of
access control entries that are used in DCE to protect objects by specifying permissions granted to DCE
principals and groups. The DCE dcecp tool is used to maintain the ACLs for this Greet6 example.

Note that this is a very simple ACL manager example. It only checks group and user entry types for
correct permissions. Also, any principal can change permissions using dcecp.

Figure 101 on page 132 represents the traditional Greet application without security and the path that the
unauthenticated RPC call (greet_rpc) takes from the client code that invokes it, to the Greet server
manager routine.

 Chapter 3. Securing the Greet Application 131

Greet Client Greet Server

Greet Client
Code

greet_rpc()

Greet Server
Stub

Greet Server
Code

(initialization)

Greet Manager

void greet_rpc()

DCE
Runtime

Greet Client
Stub

DCE - generated

User - written

Figure 101. Traditional Greet Application without Security

Figure 102 on page 133 represents the Greet6 application with an ACL manager that protects the Greet
manager routine from unauthorized client access. In this example, there are two new user-written
modules added that were not required in previous examples:

� The ACL Manager interface.

This module contains the server side calls prefixed by sec_acl_mgr. The Greet6 server application
uses these functions to make DCE-conformant runtime authorization decisions. The module consists
of the following routines that are called from the Greet server program.

sec_acl_mgr_configure() Configures the ACL database file.

sec_acl_mgr_get_access() Finds the total permissions a principal has on the object. If
the principal has a user entry and a group entry in the ACL,
the permissions are combined. Typically, permissions are not
combined if a principal matches both a user and a group
entry. Permissions are typically combined only if the principal
matches multiple group entries.

sec_acl_mgr_get_manager_types() Returns all of the available manager types. Because the
Greet6 example consists of only a single manager type, that is
all that is returned.

sec_acl_mgr_is_authorized() Checks to see if a principal is authorized. It checks user and
group entries in the local cell.

sec_acl_mgr_lookup() Retrieves the ACL from the ACL database.

sec_acl_mgr_replace() Writes the ACL to the ACL database file.

� The rdacl (ACL Network Interface) Manager.

This module contains the server side API calls prefixed by rdacl. These calls enable the Greet server
to communicate with sec_acl-based clients such as the acl_edit tool.

rdacl_lookup() Returns a pointer to an ACL for an object. It loads a copy of an
object’s ACL corresponding to the specified manager type into
memory.

rdacl_replace() Replaces an ACL pointed to by an input handle. As ACLs are
immutable, you use this call to replace an ACL after you have
modified it.

132 DCE Application Development Guide: Introduction and Style

rdacl_test_access() Tests access to an object by determining if a specified ACL
contains entries that grant privileges to the calling process that
match desired privileges.

rdacl_test_access_on_behalf() Tests access to an object on behalf of a process other than the
calling process.

rdacl_get_manager_types() Returns a list of the types of ACLs protecting an object. ACL
editors and browsers use this operation to determine the ACL
manger types that a particular reference monitor is using to
protect a selected identity.

rdacl_get_printstring() Returns an array of printable representations or printstrings for
each permission bit or the combination of permission bits a
specified ACL manager supports.

rdacl_get_access() Determines the complete extent of access to a specified object
by the calling process by reading a privilege attribute certificate.

DCE - generated

DCE - provided

User - written

Greet Client

acledit tool

Greet Server

Greet Client
Code

greet_rpc()

acledit
client

rdaclif
server
stub

Greet
server
stub

Greet Client
Stub

Greet Server
Code

(initialization)

ACL
manager
interface

(sec_acl_mgr_*)

ACL
database

file

readwrite

Greet Manager
(authentication)

void greet_rpc()

rdacl Manager
(maintenance)

DCE
Runtime

Note: 1) rdacl refers to the DCE ACL
network interface

2) sec_acl_mgr refers to the
DCE ACL manager interface

rdaclif
client
stub

Figure 102. Greet6 Application with ACL Manager

To simplify this example, the Greet6 ACL manager handles only local cell principals and groups. There is
no checking of foreign owners or groups, and no facility to store them.

 Chapter 3. Securing the Greet Application 133

Finding the Source Code for this Example

You can find the source code for this version of the Greet example in the /usr/lpp/dce/examples/greet6
directory. The source files supplied with z/OS DCE for this example are as follows:

� greet6.idl (Greet6 IDL file)
� greet6_client.c (Greet6 client code)
� greet6_server.c (Greet6 server code)
� greet6_manager.c (Greet6 manager code)
� greet6_secacl.c (Greet6 ACL manager interface code)
� greet6_rdacl.c (Greet6 ACL network interface code)

 � Makefile
 � README.

If you cannot find the Greet6 example source files in the above directory, consult your systems
programmer to find where they are located in your system.

In this example you must compile two IDL files to generate the necessary stubs and header files:

� greet6.idl (the IDL file for the Greet application)
� rdaclifv0.idl (the IDL file for the DCE ACL network interface).

To avoid any potential conflicts with other instances of the same Greet6 example and ensure that you are
running a unique instance, you should generate your own interface UUID using the UUID Generator and
replace the interface UUID in the IBM-supplied Greet6 IDL file with it.

You can find the code for this example listed in Appendix C, “Greet6 ACL Manager Example” on
page 303. The code is not listed in this section because it is quite lengthy.

Changing Name-Based Authorization to EPAC-Based: Note a change in the
authorize_client() routine contained in the Greet6 Manager code which changes the authorization
checking from name-based authorization checking in the previous example, to EPAC-based authorization
checking. Essentially, the name-based check in the previous example (see the code clip in Figure 103 on
page 135) is replaced by the code in Figure 104 on page 136.

In the name-based example, the variable privs contains the client’s principal name that is returned from
the rpc_binding_inq_auth_client() call, and used in the authorization check. The Greet5 client in the
name-based example specified name-based authorization by setting authz_svc to rpc_c_authz_name in
the rpc_binding_set_auth_info() call.

134 DCE Application Development Guide: Introduction and Style

�
�
�
else if (strcmp((unsigned_char_t ") privs, "/.../your_cell_name/greetc") != @) {

printf("Invalid client principal name %s.\n",
(unsigned_char_t ") privs);

 fflush(stdout);
 }

 else {
printf("Client is valid !\n");

 fflush(stdout);
 return(1);
 }
�
�
�

Figure 103. Greet5 Example — Name-Based Authorization

In the EPAC-based example, privs points to a data structure that contains the client’s EPAC, which is
returned from the rpc_binding_inq_auth_client() call. The client in the Greet6 EPAC-based example
specifies DCE (or EPAC-based) authorization by setting authz_svc to rpc_c_authz_dce in the
rpc_binding_set_auth_info() call.

Figure 104 on page 136 shows the authorization checking after the client is authenticated. The value
returned from the sec_acl_mgr_is_authorized() routine determines whether the client is authorized or
not.

 Chapter 3. Securing the Greet Application 135

�
�
�

printf("Client is valid!\n");
 fflush(stdout);

greetprivs = (sec_id_pac_t ") privs;

printf("Authenticated --> %d \n", greetprivs->authenticated);
 fflush(stdout);

 uuid_to_string(&greetprivs->principal.uuid,&str_principal,&st);
 uuid_to_string(&greetprivs->group.uuid,&str_group,&st);
 uuid_to_string(&greetprivs->realm.uuid,&str_realm,&st);

printf("Principal uuid -> %s\n",str_principal);
 fflush(stdout);

printf("Group uuid -> %s\n",str_group);
 fflush(stdout);

printf("Realm uuid -> %s\n",str_realm);
 fflush(stdout);

/" Retrieving the ACL UUID "/

 sec_acl_mgr_get_manager_types(NULL,NULL,sec_acl_type_object,1,&size_used,
 &num_types,manager_types,&st);

 uuid_to_string(&(manager_types[@]),&str_uuid,&st);
fprintf(stdout, "Manager uuid %s\n",str_uuid);

 fflush(stdout);

 rpc_ss_enable_allocate();
x = sec_acl_mgr_is_authorized(NULL,required_access,greetprivs,NULL,

 &(manager_types[@]), NULL,NULL,&st);

 rpc_ss_disable_allocate();

 return(x);
 }
�
�
�

Figure 104. Greet6 Example — EPAC Based Authorization

Building the Greet6 Example

Prior to compiling this example, you need to do the following tasks for your environment:

� Change all occurrences of your_dir_name in the Greet6 client and server example code to your local
namespace directory name where the Greet server and ACL manager bindings are exported.

� Change all occurrences of your_cell_name in the Greet6 manager code.

In the Shell: Use the following makefile to compile and link-edit the Greet6 application:

136 DCE Application Development Guide: Introduction and Style

IF = greet6

IDL = /bin/idl
IDL_FLAGS = -no_cpp -keep c_source
RDACLIF_PATH = /usr/include/dce
CFLAGS = -DMVS -D_DCE_THREADS -D_OPEN_SYS -W@,DLL
LIBS = -l dce /usr/lib/EUVPDLL.x

FROMIDL = $(IF).h $(IF)_cstub.c $(IF)_sstub.c rdaclif.h rdaclif_sstub.c
COBJ = $(IF)_client.o $(IF)_cstub.o
SOBJ = $(IF)_server.o $(IF)_sstub.o $(IF)_manager.o $(IF)_secacl.o \
 $(IF)_rdacl.o rdaclif_sstub.o

default: $(IF)_client $(IF)_server
$(IF)_client: $(COBJ)
 c89 -o $(if)_client $(COBJ) $(LIBS)
$(IF)_server: $(SOBJ)
 c89 -o $(if)_server $(SOBJ) $(LIBS)
client.o server.o manager.o: $(IF).h

$(COBJ): $(IF).h
$(SOBJ): $(IF).h

$(FROMIDL): $(IDL) $(IF).idl $(RDACLIF_PATH)/rdaclif.idl
 $(IDL) $(IF).idl $(IDL_FLAGS)
 $(IDL) $(RDACLIF_PATH)/rdaclif.idl $(IDL_FLAGS) -client none

clean:
 rm -f $(FROMIDL) ".o

Figure 105. Sample Makefile to Build the Greet6 Application

In Batch: After you have allocated your data sets using the TSO/E IDLALLOC command, copy the
HFS source files into these data sets using OGET. Rename the source files to the suggested PDS
naming convention as presented in “Step 1. Creating Files for Your Application” on page 30. You also
have to rename the greet6_secacl.c and greet6_rdacl.c files as PDS members. In this example, they
are renamed to GREET6SA and GREET6DA respectively. Additionally, you need to copy and rename the
rdaclifv0.idl file found in /usr/include/dce to an IDL member name that is no more than 6 characters. In
this example, it is renamed to DACLIF. As a result, you have to change the #include rdaclifv@.h to
#include daclif.h in the Greet6 server module, otherwise you will receive an error when you compile this
application. In addition, you must copy rdaclbas.idl into the GREET.IDL PDS.

After you have copied the example code to your GREET6 application data sets and compiled the two IDL
files, you can use the following example JCL to compile the GREET6 source code:

 Chapter 3. Securing the Greet Application 137

//JOBNAME JOB(ACCOUNT),...your_job_parameters
//"""
//" JCL TO COMPILE THE CLIENT, SERVER, AND STUBS CODE
//"
//" DCEPFX - FOR DCE HEADER FILES
//" LNGPFX - FOR LE HEADER FILES
//"""
//CCCLIENT EXEC EDCC,INFILE='USERPRFX.C(GREET6CL)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREET6CL),DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//"""
//CCCSTUB EXEC EDCC,INFILE='USERPRFX.C(GREET6CS)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREET6CS),DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//"""
//CCSERVER EXEC EDCC,INFILE='USERPRFX.C(GREET6SR)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREETSR),DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR

Figure 106 (Part 1 of 2). Sample JCL to Compile the Greet6 ACL Manager Application

138 DCE Application Development Guide: Introduction and Style

//"""
//CCSSTUB EXEC EDCC,INFILE='USERPRFX.C(GREET6SS)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREET6SS),DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.H,DISP=SHR,
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//"""
//CCSMGRB EXEC EDCC,INFILE='USERPRFX.C(GREET6MR)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREET6MR),DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//"""
//CCDACLM EXEC EDCC,INFILE='USERPRFX.C(GREET6DA)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREET6DA),DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//"""
//CCDIFSS EXEC EDCC,INFILE='USERPRFX.C(DACLIFSS)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(DACLIFSS),DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//"""
//CCSACLM EXEC EDCC,INFILE='USERPRFX.C(GREET6SA)',
// CPARM='LO,NOMAR,NOSEQ,DLL,RENT,DEFINE(_OPEN_SYS,_DCE_THREADS,MVS)',
// OUTFILE='USERPRFX.OBJ(GREET6SA),DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.H,DISP=SHR
//SYSLIB DD DSN=&DCEPFX..SEUVHDR,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.H,DISP=SHR
// DD DSN=&LNGPFX..SCEEH.SYS.H,DISP=SHR
//"""

Figure 106 (Part 2 of 2). Sample JCL to Compile the Greet6 ACL Manager Application

Use the example JCL in the following figure to link-edit the GREET6 client application.

 Chapter 3. Securing the Greet Application 139

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO LINK THE CLIENT AND CLIENT STUBS OBJECT CODE
//"
//"---
//" CUSTOMIZABLE SYMBOLIC PARAMETERS
//"---
//"
//" LNGPFX - FOR LE OBJECT LIBRARIES
//" DCEPFX - FOR DCE OBJECT LIBRARIES
//"
//"""
//LKCLIENT EXEC EDCPL,OUTFILE='USERPRFX.GREET6.LOAD,DISP=SHR',
// LNGPFX='CEE',DCEPFX='DCE'
//USERLIB DD DSN=USERPRFX.GREET6.OBJ,DISP=SHR
//SYSLIB DD DSN=&LNGPFX..SCEEOBJ,DISP=SHR
// DD DSN=&DCEPFX..SEUVLIB,DISP=SHR
// DD DSN=&DCEPFX..SEUVEXP,DISP=SHR
//PLKED.SYSIN DD "
 INCLUDE USERLIB(GREET6CL)
 INCLUDE USERLIB(GREET6CS)
 INCLUDE SYSLIB(EUVPDLL)
/"
//LKED.SYSIN DD "
 NAME GREET6CL(R)
/"

Figure 107. Sample JCL to Link-Edit the Greet6 Client

Use the example JCL in the following figure to link-edit the GREET6 server application.

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO LINK THE SERVER, MANAGER AND STUBS OBJECT CODE
//"
//"---
//" CUSTOMIZABLE SYMBOLIC PARAMETERS
//"---
//"
//" LNGPFX - FOR LE OBJECT LIBRARIES
//" DCEPFX - FOR DCE OBJECT LIBRARIES
//"
//"""
//LKSERVER EXEC EDCPL,OUTFILE='USERPRFX.GREET6.LOAD,DISP=SHR',
//USERLIB DD DSN=USERPRFX.GREET6.OBJ,DISP=SHR
// LNGPFX='CEE',DCEPFX='DCE'
//SYSLIB DD DSN=&LNGPFX..SCEEOBJ,DISP=SHR
// DD DSN=&DCEPFX..SEUVLIB,DISP=SHR
// DD DSN=&DCEPFX..SEUVEXP,DISP=SHR
//PLKED.SYSIN DD "
 INCLUDE USERLIB(GREET6SR)
 INCLUDE USERLIB(GREET6SS)
 INCLUDE USERLIB(GREET6MR)
 INCLUDE USERLIB(GREET6DA)
 INCLUDE USERLIB(DACLIFSS)
 INCLUDE USERLIB(GREET6SA)
 INCLUDE SYSLIB(EUVPDLL)
/"
//LKED.SYSIN DD "
 NAME GREET6SR(R)
/"

Figure 108. Sample JCL to Link-Edit the Greet6 Server

140 DCE Application Development Guide: Introduction and Style

Starting the Greet6 Server

The Greet6 ACL manager controls the Greet6 client’s access to run the greet_rpc() function. When the
server starts up, the Greet6 server binding information is exported to the /.:/<your_dir_name>/greet6
entry in the namespace, and the ACL binding information is exported to the
/.:/<your_dir_name>/greet_acl entry. Notice that this example also registers two interfaces with the
DCE runtime:

� greet_v1_@_s_ifspec. This interface is the same as in previous versions of the Greet application, and
handles the actual Greet RPC.

� rdaclif_v@_@_s_ifspec. This interface is required to perform the ACL management using the dcecp
tool.

To start the Greet6 server in the Shell, in background mode, use the following command:

export _EUV_SEC_KRB5CCNAME_FILE='/<your_home_dir>/krb5ccname1"
greet6_server greets greets &

To start up the Greet6 server in batch, use the following example JCL:

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET6 SERVER
//"
//"""
//GREET6SR EXEC PGM=GREET6SR,PARM='POSIX(ON),

'ENVAR(''_EUV_SEC_KRB5CCNAME_FILE=/<your_home_dir>/','krb5ccname1'')/ greets greets')
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//CEEDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET6.LOAD,DISP=SHR

Figure 109. Sample JCL to Start the Greet6 Server

Figure 110 shows the output you should see for the Greet server initialization process until it is in
listening. You can trace through the steps in the initialization process.

Establishing login identity with security server...
Identity established !
Initializing ACL database
Inside sec_acl_mgr_configure
Getting ACL manager types
Inside sec_acl_mgr_get_manager_types
Leaving sec_acl_mgr_get_manager_types
Setting Protocol sequence...
Registering Greet interface...
Registering ACL interface...
Server Greet bindings:
ncadg_ip_udp:9.21.22.97 [1373]
ncacn_ip_tcp:9.21.22.97 [1667]
Registering Greet Server Auth info...
Registering Greet interface with EPM...
Registering ACL interface with EPM...
Exporting server bindings to namespace...
Exporting ACL bindings to namespace...
Greet server is listening...

Figure 110. Greet6 Server Initialization Output

 Chapter 3. Securing the Greet Application 141

Updating the ACL Database File
The initial content of the Greet6 ACL database file is shown in Figure 111.

greet �1�
@9A3125@-16C8-1BB8-9B7D-C9C2D4FF@@27 �2�
@@668186-BD89-1B55-A97A-1@@@5AA89D46 �3�
@ �4�

Figure 111. Greet6 ACL Database file (After initialization)

�1� The first entry is a temporary character string, greet, that is inserted by the server application. This
gets updated to your local cell name when you use the -cell /.: option on the dcecp acl modify
command.

�2� This is the cell UUID.

�3� This is the ACL manager UUID. The Greet6 ACL manager program uses this UUID to verify the
correct ACL manager type.

�4� This is the number of ACLs contained in the ACL database file. Initially, this is set to 0 (zero);
however, as you add or delete ACLs from this file using dcecp, this number gets updated.

You can update the ACLs for this application only after the server is initialized and running, that is, the
server is in listening mode. To update the ACL database file for this example, use the dcecp tool.

When the Greet server program initializes the ACL, it inserts a temporary cell name. In this case, set the
defaults to their correct identities by using the cell /.: option from within the dcecp command.

To update permissions for principals to modify the Greet6 ACL database file, use the acl modify
subcommand within dcecp. For example, to update the permissions for the greet server principal, greets,
so it has read, write, delete permission to the ACL database file, use the following dcecp command:

dcecp -c acl modify /.:/<your_dir_name>/greet_acl -add {user greets rwd}

In this example, the greet client principal, greetc, requires a special ‘g’ permission created for this ACL
manager example. The permissions are hardcoded in the greet6_secacl.c module as follows:

142 DCE Application Development Guide: Introduction and Style

 �
 �
 �

 /" These permissions are from the dacl_manager example. A new
permission "g" has been added for this Greet example "/

 static sec_acl_printstring_t hardcoded_printstrings[] = {
 { "g", "greet", sec_acl_perm_unused_@@@@@@8@},

{ "c", "control", sec_acl_perm_owner },
 { "r", "read", sec_acl_perm_read },
 { "w", "write", sec_acl_perm_write },

{ "x", "execute", sec_acl_perm_execute },
 { "i", "insert", sec_acl_perm_insert },
 { "d", "delete", sec_acl_perm_delete },
 { "t", "test", sec_acl_perm_test }
 };

 �
 �
 �

Figure 112. Greet6 ACL Manager Permissions

To update the permission for the greetc principal, so it can run the Greet server RPC call, use the
following dcecp command:

dcecp -c acl modify /.:/<your_dir_name>/greet_acl -add {user greetc g}

You can list the permissions available using the following command:

dcecp -c acl permissions /.:/<your_dir_name>/greet_acl

You will see the new information being written to the ACL database on the server side, similar to that
shown in Figure 113 on page 144. The output shown is from the routines contained in the
greet6_rdacl.c and greet6_secacl.c modules after dcecp is invoked, and continues from the ‘Greet
server is listening...’ status message.

 Chapter 3. Securing the Greet Application 143

�
�
�
Server Greet is listening...
Inside rdacl_get_mgr_types_semantics...1
Inside sec_acl_mgr_get_manager_types
Leaving sec_acl_mgr_get_manager_types
Leaving rdacl_get_mgr_types_semantics.
Inside rdacl_get_printstring...
Inside sec_acl_mgr_get_printstring...
Leaving sec_acl_mgr_get_printstring.
Leaving rdacl_get_printstring
Inside rdacl_lookup...
This is the component name
Inside sec_acl_mgr_lookup...
Opening GREETACL
Getting GREETACL database info
1 /.../your_cell_name
2 @9A3125@-16C8-1BB8-9B7D-C9C2D4FF@@27
3 @@668186-BD89-1B55-A97A-1@@@5AA89D46
4 @
Users...
Leaving sec_acl_mgr_lookup...
Leaving rdacl_lookup
Inside rdacl_lookup...
Inside sec_acl_mgr_replace
/.../your_cell_name @9A3125@-16C8-1BB8-9B7D-C9C2D4FF@@27 @@668186-BD89-1B55-A97A-1@@@5AA89D46 2
128 3 greetc @@@@@1@A-@246-2C27-B5@@-C9C2D4FF@@5A
35 3 greets @@@@@1@9-@23F-2C27-B5@@-C9C2D4FF@@5A
Leaving sec_acl_mgr_replace
Leaving rdacl_replace

Figure 113. Greet6 Server Output — After ACLs Are Updated

The ACL manager database file, GREETACL, is accessed solely by the manager_type UUID. The routine
get_database_name() maps the UUID to the file name. Everything is handled by UUID.

Starting the Greet6 Client

To start the Greet6 client in the Shell, use the following command:

export _EUV_SEC_KRB5CCNAME_FILE="/<your_home_dir>/krb5ccname"
greet6_client greetc greetc greets 1

To start up the Greet6 client in batch, use the following example JCL:

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE GREET6 CLIENT
//"
//"""
//GREET6CL EXEC PGM=GREET6CL,PARM='greetc greetc greets 4'
//SYSOUT DD SYSOUT="
//SYSPRINT DD SYSOUT="
//CEEDUMP DD SYSOUT="
//STEPLIB DD DSN=USERPRFX.GREET6.LOAD,DSP=SHR

Figure 114. Starting the Greet6 Client

If the required client permission (‘g’) is in place, the RPC will proceed. Figure 115 on page 145 shows
the Greet server output when the Greet ACL Manager allows the Greet RPC call to proceed.

144 DCE Application Development Guide: Introduction and Style

�
�
�
Leaving rdacl_replace
The client says: Hello Server !
Validating Client
Client is valid!
Authenticated --> 1
Principal uuid -> @@@@@1@A-@246-2C27-B5@@-C9C2D4FF@@5A
Group uuid -> @@@@@@72-@267-2C27-B5@1-C9C2D4FF@@5A
Realm uuid -> @9A3125@-16C8-1BB8-9B7D-C9C2D4FF@@27
Inside sec_acl_mgr_get_manager_types
Leaving sec_acl_mgr_get_manager_types
Manager uuid @@668186-BD89-1B55-A97A-1@@@5AA89D46
Inside sec_acl_mgr_is_authorized...
Inside sec_acl_mgr_lookup...
Opening GREETACL
Getting GREETACL database info
1 /.../your_cell_name
2 @9A3125@-16C8-1BB8-9B7D-C9C2D4FF@@27
3 @@668186-BD89-1B55-A97A-1@@@5AA89D46
4 2
Users...
128 3 greetc @@@@@1@A-@246-2C27-B5@@-C9C2D4FF@@5A
35 3 greets @@@@@1@9-@23F-2C27-B5@@-C9C2D4FF@@5A
Leaving sec_acl_mgr_lookup...
Validating user uuid
Inside grant_access...
Leaving grant_access...
Leaving sec_acl_mgr_is_authorized...
Client is authorized

Figure 115. Greet6 Server Output on a Successful RPC

If the required client permissions are not in place, the RPC call will not proceed. Figure 116 on
page 146 shows the Greet6 server output when the RPC is not allowed by the Greet6 ACL Manager.

 Chapter 3. Securing the Greet Application 145

�
�
�
Leaving rdacl_replace
The client says: Hello Server!
Authenticated --> 1
Principal uuid -> @@@@@@A7-EDC2-2B6F-A8@@-C9C2D4FF@@2C
Group uuid -> @@@@@@71-EE25-2B6F-A8@1-C9C2D4FF@@2C
Realm uuid -> 295C61@@-829E-1B38-8@EC-C9C2D4FF@@A9
Inside sec_acl_mgr_get_manager_types
Leaving sec_acl_mgr_get_manager_types
Manager uuid @@668186-BD89-1B55-A97A-1@@@5AA89D46
Inside sec_acl_mgr_is_authorized...
Inside sec_acl_mgr_lookup...
Opening GREETACL
Getting GREETACL database info
1 /.../your_cell_name
2 295C61@@-829E-1B38-8@EC-C9C2D4FF@@A9
3 @@668186-BD89-1B55-A97A-1@@@5AA89D46
4 2
Users...
163 @ greets @@@@@@A6-EDB3-2B6F-A8@@-C9C2D4FF@@2C
Test greets
163 @ greetc @@@@@@A7-EDC2-2B6F-A8@@-C9C2D4FF@@2C
Test greetc
Leaving sec_acl_mgr_lookup...
Leaving sec_acl_mgr_is_authorized...
Client is NOT authorized !

Figure 116. Greet6 Server Output on an Unsuccessful RPC

The client output on an authorized RPC is shown in Figure 117.

Establishing Identity with Security Server...
Identity established !
Importing a binding handle...
Setting Auth info...
Making RPC call...
The Greet Server said: Hi Client !
Purging Login context

Figure 117. Greet6 Client Output on Authenticated RPC

The contents of the ACL database file after the two principals greets and greetc have been added are
shown in Figure 118.

/.../your_cell_name
@9A3125@-16C8-1BB8-9B7D-C9C2D4FF@@27
@@668186-BD89-1B55-A97A-1@@@5AA89D46
2
128 3 greetc @@@@@1@A-@246-2C27-B5@@-C9C2D4FF@@5A
35 3 greets @@@@@1@9-@23F-2C27-B5@@-C9C2D4FF@@5A

Figure 118. Greet6 ACL Database File (After Updates)

Notice that the number of ACLs has been updated to 2 after the ACLs for the two user principals are
added. This is followed by the ACLs themselves. Scanning horizontally across each ACL record, note
that it consists of:

146 DCE Application Development Guide: Introduction and Style

1. A number representing the permissions for that ACL. This is set to 128 for the first ACL record in the
above example.

2. A number representing the ACL entry type, either user or group in this simple ACL Manager example.
The number in this example is 3 for both ACLs as they have been set to entry type of user.

3. The user principal name.

4. The user principal UUID.

 Chapter 3. Securing the Greet Application 147

148 DCE Application Development Guide: Introduction and Style

 Chapter 4. Threads

Threads as used specifically in OSF DCE applications raise several obvious policy issues which may be
summarized, roughly, as:

� When to use multiple threads

� How many threads to use

� What scheduling and priority attributes to apply

These issues are covered in “Thread Use Policy” on page 150.

Beyond these obvious policy questions, however, threads raise a tricky issue for a programming policy
guide because it is not always clear where the line between mechanism and policy lies. Multithreaded
programming in general requires a number of practices that are likely to be unfamiliar and unintuitive to
many programmers, and errors arising from failure to follow these practices can be obscure, infrequent,
and difficult to reproduce. One result is that an incorrect program can easily appear to be correct.

A typical case is a program that performs the following sequence of steps:

pthread_create(&thread . . .);
pthread_setprio(thread . . .);

From the point of view of a single thread, this may seem like a logical sequence of steps, yet it contains a
fundamental error: the spawned thread may well have begun to execute, or even have terminated, by the
time the call to pthread_setprio() occurs. The result is a program whose behavior is indeterminate, and
which may fail unpredictably. The correct procedure is to use a thread attributes object to set the
thread's priority when it is created.

Strictly speaking, this is really a programming mechanism issue, since the failure to follow the rule results
in an incorrect program. However, errors of this type can be obscure: in fact, the resulting program might
never fail due to this error. There are many such error possibilities in a multithreaded program that can
result in all kinds of deadlocks, race conditions, and data corruption. Yet these errors can sometimes be
so obscure as to be extremely difficult to analyze a priori, and failures may occur so rarely as to be
virtually unreproducible.

As a result, correct use of threads mechanisms requires following a set of general rules designed to avoid
errors that may or may not occur in specific cases. For example, locks must be taken and released in the
same strict order. Rules like this are not enforced by the thread programming mechanisms, and failure to
follow them will not always result in program failures. In fact, failure to obey these rules may not always
be a programming error: depending on the program, it is certainly possible that there is no possible
execution path where failure to follow a rule would result in an error (although this might be difficult to
establish a priori).

As a result, such rules have in some sense the flavor of policy recommendations: they are a set of
disciplines for avoiding certain classes of problems which threads programmers can assume to exist, in
general, even though they might not arise in specific cases. Because of this, and because these rules
may be unfamiliar to many programmers, it seems wise to repeat them in summary form in this policy
guide. Moreover, because OSF DCE client and server applications are implicitly multithreaded, even
when the application itself makes no thread related calls, it is also important to identify when application
code must be thread safe. These issues are covered in “Thread Safety” on page 152.

The remaining sections of this chapter cover a variety of specific policy and usage issues relating to OSF
DCE threads. Thread handles and thread-private data are discussed in Chapter 4, “Threads.” Cancels
and signals introduce a number of specific semantic issues that applications must be aware of when

 Copyright IBM Corp. 1994, 2001 149

programming in a multithreaded environment. These are covered in “Canceling Threads” on page 155
and “Signals” on page 159. respectively. Finally, OSF DCE introduces the concept of an RPC thread.
This is intended to extend the semantics of a local thread of execution across two address spaces in the
course of an RPC. However, the extension is not entirely transparent, and applications need to be aware
of the semantic peculiarities of RPC threads. These are covered in “RPC Threads” on page 162.

Important Note to Readers

This chapter is intended as a general guide to thread use as it pertains to all OSF DCE threads
implementations. Differences in the z/OS DCE implementation of threads from the general case
described are indicated by special notes in the text.

Thread Use Policy

Thread use policy questions arise in two ways:

� Server manager code is multithreaded by default, and applications can specify the degree of
multithreading.

� Client code can be made multithreaded by making threads API calls.

To Thread or Not to Thread

The choice of multithreading is really a question of specific application design, and only general guidelines
can be supplied here. Application programmers need to be aware that, depending on the threads
implementation and the underlying hardware, concurrency may be more apparent than real for many
applications. If threads are being time-sliced on a single processor, nonblocking activities will not go any
faster because they are multithreaded. In fact, given the extra overhead of a given threads
implementation, they may be slower. Even on a multiprocessor, with the OSF DCE user-space threads
implementation, all threads in a single process contend for the same processor.

Note: This is not the case with z/OS DCE threads, which supports true parallel processing.

On the other hand, if multiple threads are carrying out activities that may block — and this includes
making RPCs to remote hosts — then multithreading will probably be beneficial. For example, multiple
concurrent RPCs to several hosts may allow a local client to achieve true parallelism. Note however, that
concurrent RPCs to a single server instance may not be any more efficient if the server itself cannot get
any real benefit from multithreading of the manager code.

RPC servers are multithreaded by default, since multithreading is an obvious way for servers to
simultaneously handle multiple calls. Even if the manager code and underlying implementation do not
permit true parallelism, manager multithreading may at least allow a fairer distribution of processing time
among competing clients. For example, a client that makes a call that can complete in a short time may
not have to wait for a client that is using a lot of processor time to complete. For this to occur, threads
must make use of one of the time-sliced scheduling policies (including the default policy). On the other
hand, if all calls make use of approximately similar resources, then multithreading may become simply an
additional, possibly expensive, form of queueing unless the application or the environment permits real
parallelism.

In summary, the developer must consider the following questions in order to decide whether an application
will benefit from multithreading:

150 DCE Application Development Guide: Introduction and Style

� Are the threaded operations likely to block, for example, because they make blocking I/O calls or
RPCs? If so, then multithreading is likely to be beneficial in any implementation or hardware
environment.

� Can the underlying hardware and RPC implementation support threads on more than one processor
within a single process? If not, then multithreading cannot achieve real parallelism for processor
intensive operations. The general OSF DCE user-space threads implementation restricts all threads of
a single process to contend for a single processor and so cannot provide real parallelism for processor
intensive operations.

� Even if the answer to both of the first two questions is “yes,” will the use of a time-slicing thread
scheduling policy permit fairer distribution of server resources among contending clients? If so, then
server manager multithreading may be beneficial.

Even if, according to these criteria, multithreading is likely to benefit an application, the programmer still
needs to consider the cost, in terms of additional complexity, of writing multithreaded code. In general,
most server manager code will probably benefit from multithreading, which is provided by default by OSF
DCE (and by z/OS DCE). Most server applications will therefore choose to be multithreaded and incur the
extra costs of creating thread-safe code. Whether client code will find the extra complexity of
multithreading worthwhile really depends on a careful assessment of the listed criteria for each program
design. There is no way to predict what a “typical” client will do.

How Many Threads?

The RPC runtime allows server applications to specify the number of manager threads available to handle
concurrent RPCs via the max_calls_exec parameter of the rpc_server_listen() routine. The runtime also
allows applications to specify the number of unhandled calls that can be queued via the
max_call_requests parameters of the rpc_server_use_*protseq* routines. In theory, these two values
should be set in conjunction, but in practice, the interpretation of the max_calls_requests parameter is
highly dependent on protocol and implementation.

For example, in a connection-oriented protocol based on Berkeley sockets, the socket backlog — the
number of connections which may be queued on a socket pending acceptance — typically has a value of
five.

Portable applications should therefore not rely on max_calls_requests as anything more than a hint to the
runtime about the number of queued calls desired. Note well that max_call_requests does not set the
number of calls that can be handled concurrently. That is strictly a function of the number of call threads,
as specified by max_calls_exec. The max_call_requests parameter simply specifies (as a hint) the
number of calls that can be queued prior to being picked up by call threads.

 Scheduling Policies

The default thread scheduling policy of the general OSF DCE threads implementation is round robin
time-slicing. This guarantees that even low priority threads will get to run. For servers, this policy
provides at least the benefit of fair access to server processing time for multiple callers, even when no real
parallelism is provided by multiple threads of execution.

Note: In z/OS DCE, MVS sets its own thread scheduling policy. Thread-creating applications, even DCE
servers, cannot change it.

 Chapter 4. Threads 151

 Thread Safety

Thread safety involves two issues. The first is blocking behavior: blocking I/O should block just the
thread doing the I/O, not the entire process. The following scenario illustrates the kind of problem that can
occur when an application fails to observe this rule:

1. The client side of the application executes a blocking I/O call such as a read() from the keyboard.

2. The read() sleeps for an indeterminate amount of time. All threads in the client process are blocked.

3. A timer thread in the client RPC runtime, which manages the client side of the RPC protocol, is among
the blocked threads. Eventually the server side times the connection out, even though the client
application is still running.

The second thread safety issue is reentrancy: routines that operate on shared objects must have
appropriate locking in place. A typical reentrancy problem is as follows:

1. The application invokes a nonreentrant malloc().

2. OSF DCE threads interrupts the malloc() and the interrupt handler executes a properly reentrant
malloc(). The reentrant malloc() examines a lock and incorrectly infers that nobody else is currently
doing a malloc().

3. Global data governing memory allocation for the process becomes corrupted.

Note: malloc() and the rest of the C/C++ runtime routines are thread-safe.

These thread safety issues arise in two contexts for OSF DCE applications.

1. Even when application code is not itself multithreaded (for example, client code that does not make
any explicit pthread API calls), both client and server applications are still multithreaded as a result of
threads created by the RPC runtime. While such single-threaded application code need not itself be
reentrant, it must still avoid blocking the entire process, and it must take care that any library routines
that it calls, which may also be called by runtime-created threads, are reentrant.

2. When application code is itself multithreaded (which is the default for server manager code), it must, in
addition to obeying the rules in 1), also be reentrant: all access to shared objects must be protected
by locks.

Obviously, providing for the second condition in explicitly multithreaded code is the application's
responsibility. The pthread API provides a set of facilities that can be used for this purpose. To provide
for the first condition, which applies to all application code, C/C++ provides thread-safe routines.

 Thread Rules

What follows is a summary of the thread-safety rules that should be followed when using the pthread
facilities. The list is by no means comprehensive; it describes the places where multithreaded applications
most frequently go wrong.

� Access to all shared objects should be protected by the appropriate synchronization mechanisms.
The pthread global lock is not appropriate for such synchronization.

� Mutexes should only be used to protect resources held for a short period of time. In particular, note
that pthread_mutex_lock() is not a cancelation point. Resources needing to be held exclusively for a
long time should be protected by condition variables rather than mutexes, as this will not inhibit
cancelability (see “Cancelation Points” on page 156).

� A shared object should be protected by only one mutex.

152 DCE Application Development Guide: Introduction and Style

� Be sure to use the available thread-safe library calls. These may be available as wrapped routines,
via the pthread.h header file, or your implementation may supply reentrant libraries which must be
linked with OSF DCE applications.

� Avoid nonwrapped process-blocking system calls, such as wait().

� When threads need to acquire more than one mutex at a time, create a locking sequence and require
that all threads follow the sequence.

� Do not make any assumptions about the atomicity of operations, as these are unlikely to be portable.

� In general, to avoid priority inversion, when three or more threads of different priorities access a lock,
associate a priority with the lock and force any thread to raise its priority to the lock priority before
acquiring the lock. Note that the default scheduling policy (SCHED_OTHER) mitigates the effects of
priority inversion by giving low-priority threads a chance to execute (and thus release held locks) even
when higher-priority threads are eligible to run.

Note: This is also the case in z/OS DCE threads, as MVS scheduling policy also ensures that
low-priority threads are eligible to run.

� You may be able to use the global locking call pthread_lock_global_np when calling into libraries not
known to be thread safe.

� Use the atfork() routine to keep the state of mutexes consistent across calls to fork(). Note, however,
that this routine is not considered to be portable. You should try to create threads rather than
processes whenever possible.

Note: atfork is not supported by z/OS DCE threads.

� Call pthread_cond_wait() from within a predicate loop, as in:

 while (test_condition)
 pthread_cond_wait();

� Set thread attributes via a thread attributes object before thread creation. Changes to a thread
attribute object after a thread has been created will not affect the thread's attributes. A thread can
straightforwardly change its own scheduling attributes by calling pthread_set_scheduler() and
pthread_set_prio(), but cannot reliably change the attributes of another thread once it has been
created.

Note: This is not applicable to z/OS DCE threads, who cannot change their scheduling attributes.

Also see “Canceling Threads” on page 155 and “Signals” on page 159 for specific guidelines relating to
cancels and signals.

Threads Programming Topics

The following subsections discuss these aspects of multithreaded OSF DCE application development:

� Thread Handles and their Use

� Storage for Thread Specific Data

 � Canceling Threads

 � Signals

 Chapter 4. Threads 153

 Thread Handles

The pthread package provides thread handles to identify threads; these are returned as the thread
argument to pthread_create(). Applications supply thread handles as thread identifiers to the routines
pthread_join(), pthread_detach(), and pthread_cancel(). Thread handles should be treated as opaque
data; they may be compared by calling pthread_equal(), but any other operations on thread handles are
likely to be nonportable and are thus discouraged.

Storage for Thread Specific Data

The pthread package provides the ability to allocate per-thread global storage using per-thread data keys.
That is, an application can create storage that has global scope within a thread but which is private to
each instance of that thread. To do this, the application creates a global data key by calling
pthread_keycreate(). Each thread then typically allocates storage of the required type and associates
this instance with the global key by calling pthread_setspecific(). Routines that need to access the
per-thread storage do so by calling pthread_getspecific(), which returns the address of the thread's
private instance.

The following code fragments show a sample model of per-thread-data key use:

/" Declare global data key storage "/

pthread_key_t key;

main()
{
 .
 .
 .

/" Create exactly one instance of the key. You could also use "/
/" a pthread_once() routine... "/

status = pthread_keycreate(&key, (pthread_destructor_t) destroy);
 .
 .
 .

/" Start some threads... "/
 .
 .
 .
}

/" The following routines are called in each of the threads. "/
/" They access the thread's private instance of the "global" "/
/" value. "/

/" The following routine sets the value to a thread-specific "/
/" value... "/

void write_global(mytype value)
{

 mytype "global_var;

global_var = (mytype") malloc(sizeof(mytype));
 pthread_setspecific(key, (pthread_addr_t)global_var);

"global_var = value;
}

154 DCE Application Development Guide: Introduction and Style

/" The following routine returns the thread-specific value... "/

mytype read_global()
{

 mytype "global_var;

/" Note the extra indirection; pthread_getspecific() returns "/
/" the address of the thread's private instance of the "/

 /" storage... "/

 pthread_getspecific(key, (pthread_addr_t")&global_var);
 return ("global_var);
}

 Canceling Threads

In order to program correctly for cancels, applications must be aware of the precise semantics of cancels
in an OSF DCE threads environment. The OSF DCE threads package provides for per thread
cancelation. Thread cancelation allows a thread to attempt to terminate a thread in the same process in
an orderly manner. The basic model is that a cancel is generated for a thread at an unpredictable time as
a result of some external event (typically, another thread calling pthread_cancel()). Whether and when
the canceled thread acts on a generated cancel depends on the thread's cancelability state, which may be
one of the following:

disabled
No cancelation takes place.

deferred
Cancelation is deferred to cancelation points.

asynchronous
Cancelation may occur at any time.

The default action for OSF DCE threads on cancelation is that the thread calls any cancel cleanup
routines that have been established and then terminates. In OSF DCE threads a canceled thread
receives a cancel as an exception, so a thread may establish a nondefault action by providing an
exception handler. However, this behavior is not recommended for two reasons. First, the exception
handling mechanism is not itself portable. Second, the cancel mechanism is intended to provide for
orderly thread termination. It is not designed as a generalized thread synchronization mechanism. (There
is, for example, only one kind of cancel.) Threads should use condition variables for this purpose. (For the
same reason, the use of pthread_signal_to_cancel_np() is not recommended, as explained in “Cancel
Rules Summary” on page 158.)

Cancelability State: A thread's cancelability state is determined by the combination of two
substates: general cancelability and asynchronous cancelability. These substates can be set to either
CANCEL_ON or CANCEL_OFF by calls to the routines pthread_setcancel() and
pthread_setasynccancel() respectively. A thread's cancelability state is determined by its general and
asynchronous cancelability substates as follows:

 Chapter 4. Threads 155

One awkwardness introduced by this mechanism for setting cancelability state is that threads cannot
easily determine their current cancelability state, although pthread_setcancel() and
pthread_setasynccancel() return the previous substates. When a thread is created, the default
cancelability state is deferred (general cancelability set to CANCEL_ON, asynchronous cancelability set to
CANCEL_OFF). A thread that needs to discover its current cancelability state should explicitly maintain
this state in some place where it can be easily queried.

Cancelation Points: Cancelation can occur at different points during a thread's execution,
depending on the cancelability state.

If the cancelability state is asynchronous, then any point can be a cancelation point; that is, the thread
may be canceled at any time.

If the cancelability state is deferred then cancelation may occur at the following points:

� While waiting on a condition variable. That is, within pthread_cond_wait() or
pthread_cond_timedwait().

� While awaiting the end of another thread (pthread_join().)

� While testing specifically for a cancel request with pthread_testcancel().

� While waiting for an asynchronous signal (sigwait()).

� When a thread is waiting within pthread_delay_np() (not a portable routine).

� During the timeslice interruption.

� When pthread_setasynccancel() is called, and either:

– It has set the cancelability state to asynchronous (general cancelability and asynchronous
cancelability are both enabled), it has not yet returned, and a cancel is pending.

– It was called to disable asynchronous cancelability state, but has not yet done so, and a
cancelation request has been asynchronously delivered.

� When suspended because of functions involving indefinite time periods, such as waits, sleep, or I/O.
See z/OS C/C++ Run-Time Library Reference under pthread_setintrtype() for more details.

One important blocking routine that is not a cancelation point is pthread_mutex_lock(), as this would
create a domino effect so that every routine calling it would also become a cancelation point. Thus,
mutexes should only be used to protect resources held for a short period of time so that noncancelability
will not be a problem. Resources needing to be held exclusively should be protected by condition
variables rather than mutexes, as this will not inhibit cancelability.

If a thread has not set a disabled cancelability state, a cancelation request has been made to that thread,
and the thread executes pthread_testcancel(), the cancelation request must be acted upon. Similarly, if
a thread has not set a disabled cancelability state, a cancelation request has been made to that thread,
and the thread is blocked at a cancelation point waiting for an event to occur, then that thread must act

Table 5. Cancelability State

General Cancelability Asynchronous Cancelability Cancelability
State

CANCEL_OFF CANCEL_OFF disabled

CANCEL_OFF CANCEL_ON disabled

CANCEL_ON CANCEL_OFF deferred

CANCEL_ON CANCEL_ON asynchronous

156 DCE Application Development Guide: Introduction and Style

upon the cancelation request. However, if a thread is suspended at a cancelation point and the event for
which it is waiting has completed before a cancelation request is received and acted upon, the thread may
resume normal execution and the cancelation request remains pending.

Cancelation Side Effects: Cancelation ordinarily involves cleanup in order to leave resources in an
orderly state. Any side effects of acting upon a cancelation request occur before the first cleanup routine
is called.

There are no side effects of acting upon a cancelation request while executing pthread_join().

The side effects of acting upon a cancelation request while in a condition variable wait are:

� The mutex is reacquired before calling the first cleanup routine.

� In addition, while the thread is no longer considered to be waiting for the condition, no signals directed
at the condition variable are consumed by the target thread if there are other threads blocked on the
condition variable.

Using pthread_cancel() to Terminate a Thread: The pthread_cancel() routine allows a thread to
cancel itself or another thread. The routine is fully described in the z/OS DCE Application Development
Reference. Its use is straightforward, but if you use it to cancel a thread that makes use of mutexes or
condition variables, you should keep in mind the following aspect of its operation.

The canceled thread receives the cancel in the form of an exception. If the thread has not disabled its
cancelability by a call to pthread_setcancel(), its effect is to immediately terminate the thread. However,
if the thread happens to have acquired a mutex (including the global lock) when it is canceled, the mutex
will remain in its locked state and no other thread will be able to acquire it. Moreover, the data that was
protected by the mutex may be in an inconsistent state as a result of the thread's having been canceled in
the middle of its operation on the data.

The easiest way to prevent this is simply to disable cancels before entering code for which access has
been restricted by a mutex. If this is undesirable, you can explicitly handle a cancel by coding an
exception-handling block.

This same possibility exists with condition variables, since the variable is protected by a mutex. An
example of handling a cancel (or any other exception) while using a condition variable follows.

 include <pthread_exc.h>

 <...>

/" First, lock the mutex that protects the condition variable "/
/" and the predicate... "/
pthread_mutex_lock(some_object.mutex);

/" Add this thread to the total number of threads waiting for "/
/" the condition... "/
some_object.num_waiters = some_object.num_waiters + 1;

/" Enter the exception handling block... "/
TRY

/" Test the predicate condition... "/
while (! some_object.data_available)

 /" If the desired condition is not yet true, wait for "/
 /" it to become true. This next call also auto- "/
 /" matically releases the mutex... "/
 pthread_cond_wait(some_object.condition, some_object.mutex);

 Chapter 4. Threads 157

/" Code to access data_available goes here "/

 <...>

/" If a "cancel" exception occurs during the call to "/
/"pthread_cond_wait(), the thread will resume execution "/
/"in the FINALLY block following... "/
FINALLY

/" Remove this thread from the total number of threads "/
 /" waiting for the condition... "/

some_object.num_waiters = some_object.num_waiters - 1;

/" Release the mutex, and then continue with the "/
 /" exception --i.e., cancel... "/
 pthread_mutex_unlock(some_object.mutex);
ENDTRY

Note that in order to handle the cancel as an exception, you must #include the pthread_exc.h header file
rather than pthread.h; this allows you to use the OSF DCE Threads exception interface.

Thread Cleanup: Each thread maintains a list of cleanup routines (handlers). The routines are
placed on and removed from the list by the pthread_cleanup_push() and pthread_cleanup_pop()
functions, respectively. These functions must appear as statements and in pairs within the same lexical
scope.

When a cancelation request is acted upon, the routines on the list are invoked in the last in, first out
(LIFO) order with cancelation disabled (cancelability state of deferred) until the last cleanup routine
returns. When the last cleanup routine returns, thread execution is terminated. If other routines are
joining with the target of the cancelation, a status of (void*) -1 is made available to them.

Cleanup routines are also invoked when the thread calls pthread_exit(). Cleanup routines should never
exit via longjmp() or siglongjmp().

Asynchronous Cancel Safety: A function is said to be asynchronous cancel safe if it is written in
such a way that entering the function with the cancelability state of asynchronous will not cause any
invariants to be violated if cancelation should occur at any (arbitrary) instruction. Such functions are often
written in such a manner that they need acquire no resources, and variables which they write that are
visible outside their process are strictly limited.

Any routines that acquire a resource can not be made asynchronous safe. This unfortunately includes
most routines that do useful work. The only function that is guaranteed to be asynchronous cancel safe is
pthread_cancel. In general, no other library functions should be called with cancelability state set to
asynchronous.

Cancel Rules Summary: The following summarizes a set of cancel-related rules that should
always be adhered to when programming with cancels:

� Applications should not use cancels as a synchronization mechanism. Condition variables should be
used instead.

� pthread_mutex_lock() is not a cancelation point. Resources needing to be held exclusively for a long
time should be protected by condition variables rather than mutexes, as this will not inhibit
cancelability.

� A condition wait (via pthread_cond_wait() or pthread_cond_timedwait()) is a cancelation point. A
side effect of acting on a cancelation request while in a condition wait is that the mutex is (in effect)
reacquired. The effect is as if the thread were unblocked, allowed to execute up to the point of

158 DCE Application Development Guide: Introduction and Style

returning from the wait, but at that point notices the cancelation request and handles it instead of
returning.

� In general, most library calls cannot be assumed to be asynchronous cancel safe, and hence must not
be called with cancelability state set to asynchronous.

� Cleanup routines should never exit via longjmp() or siglongjmp().

In addition to the material covered in this section, “RPC Threads” on page 162 covers the additional
semantics of cancels as applied to RPC threads.

 Signals

Application developers must be aware of significant differences in the handling of signals between OSF
DCE threads and typical single-threaded environments. In OSF DCE threads, some signals are handled
on a per-process basis, and some are handled on a per-thread basis. This section explains the semantic
details of OSF DCE thread signal handling.

A signal is said to be generated for a process or thread when the event that causes the signal first occurs.
Each process or thread has an action to be taken in response to each signal supported by the system or
implementation. A signal is said to be delivered when the appropriate signal action for the process or
thread is taken. A signal can be blocked (or masked) by a thread or process by establishing a signal
mask containing the signal to be blocked. The delivery of a blocked signal is deferred until it is unblocked.
(Note that if the action specified for a signal is to ignore it, the signal effectively remains blocked.) During
the time between its generation and delivery a signal is said to be pending.

Signals can be classified into two types with different semantics:

� Synchronous signals are generated by a specific thread and delivered to the same thread. Threads
can establish nondefault per-thread signal handlers for synchronous signals by calling sigaction().
Synchronous signals can be blocked on a per-thread basis by establishing per-thread signal masks.

� Asynchronous signals are generated by external events, not identifiable with a single thread.
Asynchronous signals are handled on a per-process basis. An asynchronous signal is delivered
exactly once to some thread in a process. All threads in a process share the same signal mask.
Per-process handling of asynchronous signals can be established by calling sigwait().

OSF DCE threads applications must handle synchronous and asynchronous signals differently.

Signal Masking: Signal masks can be examined and changed with the sigprocmask() function.
When a synchronous signal is masked via a call to sigprocmask() it is masked for the calling thread.
When an asynchronous signal is masked via a call to sigprocmask() it is masked for the entire process.

Care must be taken when a thread unblocks an asynchronous signal. If another thread has blocked and
is, or will be, waiting for the same signal, the results can be unpredictable and may result in the other
thread waiting forever. This problem can be avoided by having all handling of asynchronous signals occur
in a single thread, as described in “Asynchronous Signal Handling” on page 160.

 Chapter 4. Threads 159

Synchronous Signal Handling: Threads should call sigaction() to establish per-thread handlers
for synchronous signals. The OSF DCE threads sigaction() function only modifies the signal action
behavior for the calling thread and only works for synchronous signals. Threads must not use sigaction()
for asynchronous signals.

Signal handlers should be careful in the actions they perform. In general, synchronous signal handlers
should attempt to clean up and allow the thread to terminate. It is not advisable to attempt to continue
after errors such as a segment violation, illegal instruction, and the like.

In general, the threads routines cannot safely be called within a signal handler. Furthermore, runtime
libraries cannot reliably be used in signal handlers.

Asynchronous Signal Handling: Applications should handle asynchronous signals by having
one thread (or possibly a few specific threads) call sigwait(). The waited-for signals must be blocked
before waiting. The recommended procedure is to establish a “signal catcher” thread that calls
sigprocmask() to establish the per-process mask for asynchronous signals and then calls sigwait() to
wait for the set of blocked signals. The following code fragment shows an example of a signal catcher
thread start routine:

/"
 " This is run by the signal catcher thread to handle async signals.
 " We don't use sigaction() here because it won't work with
 " async signals. Note that signals must be blocked prior to being
 " waited for.
 "/

void signal_catcher(char "arg)
{
 sigset_t signals;
 int sig;

 sigemptyset(&signals);

/" In this sample, we'll catch only SIGINT... "/

 sigaddset(&signals, SIGINT);
sigprocmask(SIG_BLOCK, &signals, NULL);"/

 while(1)
 {

sig = sigwait(&signals);
 switch(sig)
 {
 case SIGINT:

/" SIGINT specific actions here. "/
 .
 .
 .
 break;
 default:

/" Not reached. If we were waiting on other "/
/" signals, this would establish a default action "/

 /" to exit... "/
 continue;
 }
 break;
 }

sigprocmask(SIG_UNBLOCK, &signals, NULL);

/" Do termination clean up here. "/
 .

160 DCE Application Development Guide: Introduction and Style

 .
 .
 exit(1);
}

Signal Rules: The following rules summarize correct signal handing practices for multithreaded
programs.

� Signals must be blocked prior to being waited for. The sigwait() call waits for blocked (masked)
signals.

� In order to avoid unpredictable behavior, all asynchronous signal handling should be confined to one
signal catcher thread. This may be extended to a set of signal catcher threads.

� pthread_cond_signal() cannot safely be used in a signal handler that is invoked asynchronously. In
general, mutexes and condition variables are not suitable for releasing a waiting thread in response to
a signal handler. When a thread must wait for an asynchronous signal, use sigwait() instead.

� Signal handlers should not call the pthread routines. In general, runtime libraries cannot reliably be
used in signal handlers.

Forking in a Threaded Application
Note: The following discussion does not apply to z/OS DCE threads, which does not support fork().

The fork() system call causes the creation of an exact clone of the caller's address space, resulting in the
execution by two address spaces of the same code. In order to avoid the problems that would arise in a
threaded environment when one thread, possibly without the others' knowledge, executes a fork(), the
POSIX model defines fork() to result in the propagation only of the calling thread. Any other active
threads are immediately terminated without notice.

The abrupt destruction of the other threads means that any mutexes they may have been holding at the
time of the fork() will persist in the locked (and therefore unacquirable) state. On the other hand,
assuming that the call to fork() is followed by a call to exec(), then the outstanding mutexes will remain so
only until exec() is called, when the new process space will be reinitialized.

Thus, “out-of-state” mutexes are a problem for the forked thread only in the interval between the fork()
and the exec(). Even so, as long as no calls occur here to routines outside the application, you can
determine whether the thread is going to encounter any mutexes that could have been locked by the
destroyed threads. However, it is impossible to be sure of this if calls into other libraries, which may have
hidden interdependencies, occur in this interval.

Aside from these considerations, there is also the question of what happens when exec() fails and
execution returns to the original forking (and now lone) thread, which is left with an address space that
may contain out-of-state mutexes (as well as an inconsistent state in the data protected by the mutexes)
as a result of the fork().

OSF DCE does not support the “simple” fork(); it supports only the fork() - and - exec() sequence. For
cases where forking in the presence of threads is felt to be necessary, OSF DCE Threads provides a
mechanism, the atfork() call, which allows you to install “fork handler” routines for an application or a
library. These routines will be automatically run as follows:

� A routine that will be run just prior to the fork in the parent process; that is, just before all of the other
threads are terminated

� A routine that will be run in the child process just after the fork occurs; that is, just after all the other
threads are terminated

 Chapter 4. Threads 161

� A routine that will be run in the parent process just after the fork occurs; that is, just before the parent
(forking) thread resumes execution

 RPC Threads

Each RPC occurs in the context of a thread. A thread is a single sequential flow of control with one point
of execution at any instant. When an application thread extends across client and server execution
contexts via the OSF DCE RPC mechanism, the local execution contexts are joined by an abstraction
known as an RPC thread. The RPC thread attempts to extend local thread semantics to the situation in
which execution is extended over two or more local contexts. Specifically, the RPC mechanism tries to
make RPC cancels look to the application as much like local cancels as possible.

RPC Cancel Semantics

The semantics of cancels across RPCs are slightly different from the semantics across local (procedure)
calls. The differences can be summed up as follows:

1. If the cancel state is disabled when an RPC is made, then, regardless of what is done to the
cancelation state on the remote procedure, no cancels will be seen by the remote procedure.

This is because a cancel must be noticed in the client-side runtime in order for it to be forwarded to
the server. However, if the cancelation state has been set to disabled when an RPC is issued, then
since the client-side runtime does not enable cancels, the client-side runtime will never notice if a
cancel has been issued against the calling thread; subsequently, the cancel remains pending and
unnoticed by the client-side runtime, even if the server side has changed the cancelation state (for
instance, to deferred).

Furthermore, since lexical scoping of changes to the cancelation state is enforced by RPC, the
cancelation state in effect at the time of the RPC call is restored upon completion of the call. Thus,
any state changes made on the server side of the call are lost. Any issued cancels remain pending as
the server-side state change is “undone” by the client-side runtime prior to returning to the calling
thread. In this instance, if a cancel arrives after the callee returns, the cancel will not be acted upon.

This behavior contrasts with the local procedure call case: if cancel state is disabled when a local
procedure call is made, and the callee sets the cancelation state to deferred, then if a cancel arrives
and the callee hits a cancelation point, the cancel will be acted upon. Furthermore, if the cancel
arrives after the callee returns, the cancel will be acted upon when a cancelation point is arrived at in
the caller.

2. If cancelability state is deferred, then cancelation requests will be sent to the server where they will be
handled according to the server's setting of the cancelability state for the application thread extension
(that is, the call thread) in the server. If ignored at the server, the client side would then effect the
cancel upon return from the RPC, so the cancel would not be lost or incorrectly handled. In particular,
the timeslice interrupt (context switch) is a cancelation point in OSF DCE threads, so that even if a
cancel were ignored by the server side, when the RPC returns, the thread will be at a cancelation
point.

3. If cancelability state is asynchronous, then cancelation can happen at any time. In general, this state
is not recommended across the scope of an RPC in line with the rule that most routines that do useful
work are not asynchronous cancel safe and thus should not be called with asynchronous cancelability
state.

162 DCE Application Development Guide: Introduction and Style

 Chapter 5. Security

For the purposes of the discussion in this chapter, the security services provided by DCE are assumed to
consist of three elements: authentication, access control, and data protection. (The DCE Audit Service,
which is also a part of DCE security, is described in the z/OS DCE Application Development Guide: Core
Components.)

The roles of these three elements can be broadly defined as follows:

� Authentication establishes whether service requestors are who they say they are.

� Access control provides mechanisms that applications can use to establish whether a given
requester is permitted to perform some operation.

� Data protection guarantees the secrecy and integrity of data exchanged between clients and servers.

As with other DCE services, use of the security services raise two kinds of policy questions. At one
level, application programmers must decide which services and levels of service to employ. At a
second level, once a service has been chosen, the application programmer must make many
decisions about how to use it. This chapter covers both levels of policy, although it focuses mainly on
the lower-level policy issues specific to each service. This emphasis is due both to the fact that the
higher-level issues are relatively few — mainly whether to use a given service or not — and to the
belief that it is far easier to understand the general issues once the specifics are clear.

Security is an especially complex area from the policy point of view. Security systems must anticipate
threats both from human ingenuity and random accident, and it can be difficult — perhaps impossible
— to be confident that no serious threat is being overlooked. DCE security provides an extensive
security model that applications can incorporate in a few well-integrated chunks. Thus applications
can get the benefit of the DCE security design — and the extensive, specialized analysis that went
into it — with relatively little effort. Applications should avoid creating security solutions ad hoc and
should stick closely to the solutions provided by DCE security. Unless the programmer is a security
specialist, it is extremely unlikely that an application-specific solution will provide better security than
the DCE security services, and it is practically guaranteed that such solutions will contain unforeseen
weaknesses.

The Basic Security Model

At a high level the DCE security model is as follows:

Servers specify the authentication service they use (currently either none or DCE secret key). Clients
request an authentication service (which may be none) when making a call. When a server specifies an
authentication service, it is specifying the service it will use if authentication is requested by the client.
This allows a server to permit both authenticated and unauthenticated access. When a client requests
authentication and the server provides it, then authentication is carried out silently by the runtime as part
of the RPC protocol. The runtime will fail the call if the client cannot be authenticated. When no
authentication is requested, none is performed. If the client requests authentication and the server does
not provide it then the runtime will fail the call.

The following table shows how client and server authentication actions affect RPC calls. Clients specify
an authentication service for a binding handle by calling rpc_binding_set_auth_info(). Servers register
an authentication service by calling rpc_server_register_auth_info(). The possible values are
rpc_c_authn_none for no authentication and rpc_c_authn_dce_secret (or rpc_c_authn_default) for
DCE secret key authentication.

 Copyright IBM Corp. 1994, 2001 163

Authentication establishes only that each of the parties is a principal known to the authentication service,
and that each party knows who the other is. Servers typically make an explicit authorization decision,
using one of the DCE authorization services, to decide whether a given authenticated principal should in
fact be granted access to some operation or resource. In most cases clients will not be satisfied with the
mere assurance that they are communicating with an authenticated principal. Clients must then check the
authenticated identity of the server to be sure that it is one with which they are willing to communicate.
Note that this kind of server identity check is normally made at a low level of granularity; typically once per
client-server session. Server authorization of clients is usually much more specific: typically once per
remote operation.

Authorization is based on the identity of the caller, which may be expressed either as a principal name or
as a set of privilege attributes. What the RPC authentication model provides to the server are, essentially,
guarantees as to the authenticity of the identity and possibly the privilege attributes of the caller. Since an
identity without such guarantees would be useless for access checking, authorization is supported only for
authenticated RPCs. If the client chooses to call unauthenticated, the runtime permits the call and does
not provide any authentication information.

It is entirely up to the application manager code to make an access decision based on any authentication
and authorization data provided by the runtime for a client. Clients specify an authorization service for
each binding: either none (rpc_c_authz_none), client principal name-based authentication
(rpc_c_authz_name), or DCE credential-based authentication (rpc_c_authz_dce). When a server
manager operation is invoked (implying either that no authentication was performed or that authentication
was performed and succeeded) the application can retrieve any authorization information by calling
rpc_binding_inq_auth_caller().

The application manager must then make an access decision based on the retrieved information. The
DCE ACL facility provides application support for access control list (ACL)-based authorization using the
client credentials. This is the recommended authorization scheme.

In addition to authentication and authorization, the DCE security services can also provide various levels
of data secrecy and integrity guarantees. The basic model is that the client application requests the
minimum acceptable protection level. The runtime then provides the lowest supported protection level that
is at least as high as the one requested by the client. If the runtime cannot provide at least the requested
level, it fails the call. Supported levels, and the services provided by each level, depend on the
authentication service in use, so clients must take care to request a level that is meaningful for the
authentication service they have specified.

Table 6. Authentication

Client Specifies Server Registers Authentication

rpc_c_authn_none rpc_c_authn_none No authentication performed

rpc_c_authn_none rpc_c_authn_dce_secret No authentication performed

rpc_c_authn_dce_secret rpc_c_authn_none Call rejected by RPC runtime

rpc_c_authn_dce_secret rpc_c_authn_dce_secret Authentication performed

164 DCE Application Development Guide: Introduction and Style

 Application Roles

Each of the elements of DCE security makes very different demands on the application. In the case of
data protection, the application need only specify a protection level. The RPC runtime takes care of data
protection transparently and the guarantees provided are fairly easily understood.

In the case of authentication, clients and servers have to do more work to establish the required state for
authentication to take place. The required steps are described in detail in “Authorization” on page 176.
Once this initialization is taken care of, the RPC runtime provides authentication transparently.

The authorization component of DCE security requires the most work from the application. Essentially,
DCE provides applications with a set of mechanisms for access control. These include

� The authenticated identity and privilege attributes (in the form of credentials) of service requesters,
provided by the RPC runtime to servers.

� Access Control Lists (ACLs) which servers may associate with objects they control.

� A default mechanism for determining a service requestor's privileges from an ACL and the requestor's
credentials.

� Tools for administering ACLs.

Servers that use the DCE ACL-based authorization services must do a fair amount of initialization to
create an ACL manager. Each protected operation must then explicitly call the ACL manager to make an
authorization decision for each protected operation. A set of ACL management APIs is provided to make
these tasks easier, but the work required remains nontrivial.

 Authentication Model

The DCE authentication model is currently based on the Kerberos shared secret key protocol. In theory,
the application-level interface to authentication is sufficiently abstract that an alternative authentication
protocol can be implemented. However, given that none so far has been implemented, it would be difficult
to define protocol-independent authentication policies based on a realistic understanding of the behavior of
alternate authentication services or the as yet unspecified programmer's interface to such services. The
policy recommendations of this section do, therefore, make the assumption that Kerberos is the underlying
authentication protocol. No guarantees can be given as to their appropriateness if an alternative
authentication protocol is implemented.

The DCE Authentication Model

The authentication mechanism is based on two fundamental constructs: principal identities and secrets
(keys). These are, in a sense, the fundamental data of authentication. The basic authentication policy
issues therefore have to do with how applications manipulate this data: how they acquire their principal
identities and how they maintain the security of their secret keys. This section discusses these questions.
The following discussion assumes an understanding of the basic transactions of the Kerberos protocol as
implemented by DCE. That is, it assumes that you understand such concepts as conversation keys,
tickets, a trusted computing base, etc. It does not assume that you know anything about the details of
protocol encoding, encryption mechanisms and so on.

At a very general level, authentication (Kerberos)-related activity takes place in three stages:

1. Before any application can make use of the authentication service, some administrative actions are
required, mainly to establish the required principal identities and related secret keys.

 Chapter 5. Security 165

2. Some application-level actions are then required of the client and server principals: fundamentally, the
client must obtain validated credentials, and the server must point the RPC runtime to the storage for
its keys. Note that, strictly speaking, the server need not itself obtain any credentials as these are
only used by the client of the Kerberos exchange. However, since servers typically must also act as
clients (of the name service, for example) they will normally also need to acquire credentials.

In the case of the client, the application-level actions required to obtain credentials are normally
carried out by a login program before the client is run, and the client inherits valid credentials.
Therefore, this stage of activity is not usually carried out explicitly by clients. In the case of the server,
these activities are usually carried out by the server explicitly. The reasons for this difference are one
of the topics covered in the discussion that follows.

3. Authentication related RPC protocol activity is then carried out transparently by the RPC runtime
during each call.

In addition, server application code needs to make authorization decisions based on the assumption that
authentication has been carried out, but these belong more properly to the realm of authorization, as
described in “Authorization” on page 176.

Note that the application code proper need only concern itself with item 2) in the above list. This item is
therefore the appropriate realm for policy recommendations about application-level authentication. Item 1)
is an administrative task required for the installation and maintenance of the application. Nevertheless, the
required administrative actions depend on how the application treats authentication and are, therefore,
indirectly a policy concern for the application programmer. What this policy guide recommends is
essentially a standard application security model that results in a standard administrative task. Note that,
once the administrative and application setup covered by items 1) and 2) have been performed, item 3) is
handled transparently by the RPC runtime.

 Application-Level Authentication

One of the obvious conclusions to be drawn from the general discussion of DCE authentication is that
application-level client and server authentication responsibilities are highly asymmetrical: clients typically
inherit identities while servers assume them implicitly; clients are concerned with credentials while servers
are concerned with keys. The reasons for these asymmetries have to do both with the underlying
asymmetry of the Kerberos model and with an underlying model of RPC client and server behavior that is
also asymmetrical.

From the Kerberos point of view, the basic model is that a client acquires and holds tickets (credentials),
valid for some period of time. These function as temporary proxies for the client's secret. The server, on
the other hand, makes use of no such proxy: it needs constant access to its secrets in order to decrypt
new client requests and discover the applicable conversation keys.

From the RPC point of view, the basic model is that servers are persistent entities in the sense that they
normally perform services on behalf of more than one client principal session. This may mean that
servers are persistent in time: that is, that they run for a long time, possibly for as long as the machine
they are running on is up and running. But even servers that are invoked on demand, and therefore run
for a short period of time, can be invoked by multiple clients and, during their short lives may well perform
services for clients other than the invoker.

Clients, on the other hand, will typically be invoked by an interactive principal to run within the scope of a
single principal login session. Such clients can therefore usefully acquire their credentials from the
principal who invoked them. Note, however, that there is nothing to require clients to behave in this
manner. A persistent client can easily be written that assumes its own identity, manages keys, and
acquires and updates credentials. The basic authentication policies described here can be easily
extended to cover this case.

166 DCE Application Development Guide: Introduction and Style

For a client that runs with an inherited identity, the principal security problem— the maintenance of its
secrets— is reduced to the problem of maintaining the security of its credentials while they are valid. The
client is basically passive in this respect, depending on the local operating system to prevent unauthorized
access to the credential cache of the DCE principal that initiates the client application. Direct
management and discovery of keys (for example, reading them from a configuration file) is not required of
such clients. Typically, such an application can do nothing about the security of the principal's keys used
to acquire credentials, since all the authentication-related state is inherited. The client's real security
responsibility is therefore negative: not to take any action outside of the specified authentication policy
model that could compromise security for the identity with which it runs (for example, indiscriminately
giving other processes access to its credentials).

Clients may or may not be concerned with the identities of the servers they call. The Kerberos
authentication exchange is mutual in the sense that both clients and servers must have genuine
authentication identities to participate successfully. However, a client may not trust a server simply
because it can successfully authenticate to the client. The client may want to make RPCs only to servers
with specific principal identities that it trusts. In this case, the client has the additional security task of
safely maintaining a list of acceptable server identities with which it is willing to communicate.1

For the server, the basic authentication problem imposed by the DCE secret key authentication protocol is
the maintenance of keys. This depends on local operating system access control to the key storage
(typically a so-called keytab file) for the DCE principal identity used by the server. However, since servers
normally also need to acquire credentials (in order to behave as clients of other services) application
programmers need to think carefully about how the server identity is acquired. In general, it is not
satisfactory to have servers run with credentials inherited from human logins. For one thing, this requires
the server to share keys with human users. This means that the server either needs to have access to
the default key storage used by human principals (typically the default keytab file, probably owned by
root) or it needs to keep separate copies of user keys in local storage. Both of these schemes decrease
the security of keys, and the latter makes key management difficult.

A straightforward scheme that meets these requirements is to have the server identity supplied by the
invoker (or a configuration file) and have the server assume this identity via a series of Security Service
calls. The only administrative overhead is in establishing at least one principal and the required keytab
file. This is typically handled through dced facilities.

1

This is another of the basic asymmetries of the Kerberos-based security mechanism. Servers can control client access by
demanding that the client be authenticated and then making authorization decisions based on the client's authenticated privilege
attributes. Clients can only require that the servers they call be authenticated. This leaves the client with three server
authentication options:

1. The client doesn't care about the identity of the server.

2. The client demands that the server be authenticated, but does not care which authenticated identity the server uses.

3. The client only trusts principal identities known to it directly or indirectly, such as by being a member of a trusted group.

Application steps for checking authenticated server identity are discussed in “Authorization” on page 176.

 Chapter 5. Security 167

Obtaining an Authentication Identity

DCE clients normally inherit valid credentials from the logged-in principal who invokes them. DCE servers
normally need to establish an identity explicitly. The steps they take, and their relation to the Kerberos
protocol, are described in this section.

In actual practice, clients want to obtain a Privilege Ticket Granting Ticket (PTGT) since they want to
prove not only their identities to servers, but also to provide their certified privileges (in the form of
credentials). However, from the point of view of authentication, the principle is the same: the client needs
some kind of TGT. For simplicity's sake, the following discussion pays little attention to the distinction
between TGTs and PTGTs (as well as the many extra protocol steps involved.)

The terms “credentials,” “authentication identity,” and “login context” are often used to mean vaguely the
same thing. Here however, we will use “credential” to mean a ticket held by an application. An
application's credentials at any point typically consist of a number of cached tickets, including a TGT,
PTGT, and a variety of service tickets. (Also, an application may have acquired more than one principal
identity, in which case it will have credentials for each.) We will use “authentication identity” to mean the
set of authentication-related data—including credentials— referred to by a login context. Finally, we will
use “login context” to mean the opaque handle to authentication-related data that applications use.

An instance of authentication identity data in its various states is represented to an application as an
opaque login context (sec_login_handle_t). An application obtains an authentication identity by calling
sec_login_setup_identity(), which returns a login context containing the TGT data. An application
validates the identity by passing the login context to sec_login_validate_identity(). Parts of the TGT
obtained by sec_login_setup_identity() are encrypted using the requesting principal's key, obtained from
the registry. sec_login_validate_identity() requires the principal's key (from the keytab) to perform the
decryption. Once this has occurred, the client runtime also performs the further steps necessary to
acquire a PTGT and other tickets.

The setup and validation operations are separate in order to minimize the amount of time that the
application needs to maintain the principal's key in its address space. Applications obtain the principal's
key by calling sec_key_mgmt_get_key(). The call to sec_login_validate_identity() destroys the key in
place before returning. Applications should not violate the intention of this design by keeping the key in
memory longer than necessary. That is, they should make the required calls strictly in the sequence
illustrated in the following code fragment:

 sec_login_setup_identity(prin_name, sec_login_no_flags,
 &login_context, status);

 sec_key_mgmt_get_key(rpc_c_authn_dce_secret, keytab,
prin_name, @, (void"")&keydata,status);

 sec_login_validate_identity(login_context, keydata,
&reset_pwd, &auth_src, status);

(These calls are bundled into the dce_server_sec_begin() routine.)

Once an authentication identity has been obtained and validated, an application that intends to use the
identity for authenticated RPC normally turns it into the default login context by calling
sec_login_set_context(). As the default login context, an authentication identity is implicitly available to
authenticated RPC calls made within the same process. An application, such as a client, that inherits an
authentication identity, inherits it as the default login context.

168 DCE Application Development Guide: Introduction and Style

The Authenticated RPC Call

Once an application has either inherited or established a validated authentication context, it establishes
authentication for RPCs by annotating the binding handles on which those calls are made. Clients do this
by calling rpc_binding_set_auth_info(). No further action is required of the application: when an RPC is
made on such a binding handle, all further authentication is carried out silently by the RPC runtime.

The call to rpc_binding_set_auth_info() requires three pieces of authentication-related state:

1. The authentication service to use: either DCE secret key or none.

2. The login context to use. Most applications will specify the default login context (by setting the
auth_identity parameter to NULL.)

3. A principal name for the server being called.

Note that applications may need to establish a default login context even if they do not explicitly call
rpc_binding_set_auth_info() to set this context for a specific binding handle. In particular, access to
name and other services involves authenticated RPC calls made by the runtime on the application's
behalf. In these cases, the application does not have a chance to call rpc_binding_set_auth_info()
explicitly. These implicit calls therefore use the default identity for authentication purposes. It is mainly for
this reason that servers need to establish a validated authentication identity for the principal under which
they run and make this the default login context.

The principal name specified to rpc_binding_set_auth_info() establishes the principal for which Kerberos
service tickets will be requested for RPCs on the binding handle. An application making RPC calls may or
may not care about who the server principal is. The client may be satisfied to call any server that
provides the service it wants, or the client may need to trust the server and thus require a trusted server
principal identity.

Typically, a client learns the principal identity of a server by calling rpc_mgmt_inq_server_princ_name().
If the client is willing to call any server, the returned principal name may be passed to
rpc_binding_set_auth_info() without further checks. If the client must trust the server, then the client
needs to check the returned principal identity against a list of (one of more) acceptable values. The client
needs to obtain this list by some application-specific means.

Note that it is not the call to rpc_mgmt_inq_server_princ_name() or any subsequent checks on the
returned name that actually authenticates the server to the client. A malicious server could certainly
arrange to return a false principal name. However, a false name would be useless for authentication since
the false server would not have access to the secrets (keys) of this identity. However, the client does
need to protect its list of acceptable server identities to prevent a malicious server from modifying the list
to include its own identity.

 Managing Keys

An application that wishes to perform the server side of the Kerberos protocol exchange is principally
concerned with managing its keys. Keys are normally stored in keytab files which must be in the local
host file system. The server needs local system permission to read and write them, and they must be
protected from any access by other local identities.

Note: Keytab files are normally created by administrative action. Be aware that the local identity or the
process running rgy_edit determines the initial local ownership of files created by ktadd. When
keytab files are created by dcecp, local ownership of the files is given to root.

This means that the server needs its own local identity too, to correspond to its DCE identity. Keytab files
should be owned by this local identity. The programmer or installer must arrange for the server to run

 Chapter 5. Security 169

under this local identity, and only a locally privileged user should have execute permission for the server.
On UNIX systems this can be arranged by having the server run setuid() to the chosen local identity and
giving execute permission only to specific local users.

Because the degree of integration between local and DCE login varies with DCE implementations, it is
difficult to give more general advice about local identities. As the following paragraphs explain, however, it
is generally not a good idea for the server to run with the DCE identity of a human user. If DCE and local
identities are the same, then the same guideline must be applied to local identities. That is, the server's
local identity should not be that of a human user.

When a server is initialized it will get its key from its keytab file. The keys installed in keytab files should
not be tied to some human readable password: that is, they should be randomly generated and updated
frequently (as enforced by administrative policy). This means that servers do not have DCE “passwords”;
passwords should be used for human login only.

In general, the domains of human and nonhuman users should be separate. For example, a human user
needs a password from a restricted domain (typeable on the keyboard), hence keys tied to passwords are
generally less secure than keys not tied to passwords. Furthermore, when keys are tied to passwords,
key management is much harder.

Servers therefore should acquire their own nonhuman, server-specific identities. Requiring a small amount
of administrative overhead to set up a DCE identity for a server-specific principal is not an onerous task
for a server that is not frequently installed. In an identity based security system, the server's principal
name is the essential persistent security datum for a server. Its importance is in some ways equivalent to
that of the server's bindings.

One might complain that keeping keys in a keytab file places all of the server security burden on the local
operating system, and this is correct. But an alternative scheme, such as requiring a user password to
start a server, does nothing to improve on this. Indeed, it is the cardinal fact of DCE security that, on any
local system, it is only as secure as the local operating system upon which it runs. It is therefore a sound
policy to make this dependency explicit rather than erecting an illusory layer of DCE security on top of it.

Default Server Authentication Steps

The default model for server authentication consists of the following steps:

1. The server specifies a server-specific keytab file and server-specific principal name when it calls
rpc_server_register_auth_info().

2. The server acquires valid credentials for its server-specific identity via a series of sec API calls.

3. The server does periodic key management by establishing a separate thread that calls
sec_key_mgmt_manage_key(). This keeps the server's key up-to-date according to local key
management policies and thus prevents the server from becoming inoperable because of an expired
key.

4. The server contains code to check and, if necessary, revalidate and recertify its credentials when
undertaking operations that require valid credentials (such as name service export and unexport
operations).

The following sample functions, reproduced from the sample DCE application, implement credential
acquisition, credential revalidation, and key management.

In order to save space and to improve the readability of the text, the code shown below has been slightly
edited: all status checks, and all calls to the DCE serviceability interface (to print or log status or
informational messages), have been removed.

170 DCE Application Development Guide: Introduction and Style

managekey: The managekey() routine manages the server principal's key, making sure that it never
expires.

/""""""
 "
 " managekey -- Make sure the server principal's key is changed before
 " it expires.
 "
 " The key management thread which runs this function is created
 " in server_get_identity(), below.
 "
 "
 """"""/

void managekey(char "prin_name){ /" Server principal name "/
 unsigned32 status;

status = error_status_ok;

 sec_key_mgmt_manage_key(
rpc_c_authn_dce_secret, /" Authentication protocol. "/
KEYTAB, /" Local key file. "/
(idl_char ")prin_name, /" Principal name. "/

 &status);

}

server_get_identity: The server_get_identity() routine sets up a new server identity.

/""""""
 "
 " server_get_identity -- Establish a new server identity with valid
 " credentials. This includes setting up a key
 " management thread.
 "
 "
 " Called from main().
 "
 """"""/

void server_get_identity(
unsigned_char_p_t prin_name, /" Server principal name. "/
sec_login_handle_t "login_context, /" Returns server's login context. "/
unsigned_char_p_t keytab, /" Local key file. "/
unsigned32 "status)
{

 pthread_t keymgr;
 sec_passwd_rec_t "keydata;
 sec_login_auth_src_t auth_src;
 boolean32 reset_pwd;

"status = error_status_ok;

/" Spin off thread to manage key for specified principal... "/
if (pthread_create(&keymgr, /" Thread handle. "/

pthread_attr_default, /" Specifies default thread "/
 /" attributes. "/

(pthread_startroutine_t)managekey, /" Start rou- "/
/" tine; see above. "/

(void")prin_name)) /" Argument to pass to start "/
/" routine: server princi- "/

 /" pal name. "/

 Chapter 5. Security 171

/" Create a context and get the login context... "/
 sec_login_setup_identity(prin_name,
 sec_login_no_flags,
 login_context,
 status);

/" Get secret key from the keytab file... "/
 sec_key_mgmt_get_key(rpc_c_authn_dce_secret,
 keytab,
 prin_name,
 @,
 (void"")&keydata,
 status);

/" Validate the login context... "/
 sec_login_validate_identity("login_context,
 keydata,
 &reset_pwd,
 &auth_src,
 status);

/" Finally, set the context... "/
 sec_login_set_context("login_context, status);

}

server_renew_identity: The server_renew_identity() routine makes sure that the server's
credentials are valid.

/""""""
 "
 " server_renew_identity -- Make sure that credentials are still valid, and
 " renew them if they are not.
 "
 "
 " This routine is called (with the current credentials) whenever a task
 " is about to be attempted that requires valid credentials. For an ex-
 " ample, see the cleanup code in "main()" above. A valid credential will
 " nevertheless be considered invalid if it will expire within time_left
 " seconds. This gives a margin of time between the validity check that
 " occurs here and the actual use of the credential.
 "
 " Called from main() (but can be called from elsewhere).
 "
 """"""/

void server_renew_identity(
unsigned_char_p_t prin_name, /" Server's principal name. "/
sec_login_handle_t login_context, /" Server's login context. "/
unsigned_char_p_t keytab, /" Local key file. "/
unsigned32 time_left, /" Amount of "margin" -- see above. "/
unsigned32 "status) /" To return status. "/
{
 signed32 expiration;
 time_t current_time;
 sec_passwd_rec_t "keydata;
 sec_login_auth_src_t auth_src;
 boolean32 reset_pwd;

"status = error_status_ok;

172 DCE Application Development Guide: Introduction and Style

/" Get the lifetime for the server's Ticket-Granting-Ticket (TGT). "/
/" Note that sec_login_get_expiration() returns a non-zero "/
/" status for an uncertified login context. This is not "/
/" an error. Hence the special error checking... "/

 sec_login_get_expiration(login_context,
 &expiration,
 status);

/" Get current time... "/
 time(¤t_time);

/" Now, if the expiration time is sooner than the desired "time "/
 /" left"... "/

if (expiration < (current_time + time_left))
 {

/" Refresh the server's authenticated identity... "/
 sec_login_refresh_identity(login_context,
 status);

/" Get key from local file... "/
 sec_key_mgmt_get_key(rpc_c_authn_dce_secret,
 keytab,
 prin_name,
 @,
 (void"")&keydata,
 status);

/" Validate the login context... "/
 sec_login_validate_identity(login_context,
 keydata,
 &reset_pwd,
 &auth_src,
 status);
 }

}

The server initialization code need then only make the following calls to establish server authentication
and obtain valid credentials:

/" Register server authentication information... "/
 rpc_server_register_auth_info(server_principal_name,
 rpc_c_authn_dce_secret,
 NULL,
 KEYTAB,
 &status);

/" Assume new identity... "/
 server_get_identity(server_principal_name,
 &login_context,
 (unsigned_char_p_t)KEYTAB,
 &status);

Once the server has been running for a while, so that credentials may have expired, the server then calls
server_renew_identity() before undertaking any task that requires valid credentials. For example, a
server typically needs to call this operation before attempting to clean up its name space before shutting
down.

 Chapter 5. Security 173

Default Client Authentication Steps

Once a client has inherited or created a validated identity, the only step required is to call
rpc_binding_set_auth_info(). The client must supply a server principal name as an argument to this call.

Clients can inquire for the principal identity of a server by calling rpc_mgmt_inq_server_princ_name(). If
the client does not care about the principal identity of the server, the returned value can be supplied to
rpc_binding_set_auth_info() without further ado. If the client will only accept certain server identities,
then it needs to check the returned value against the acceptable ones.

The list of acceptable values must be obtained and maintained by the client by some means of its own
choosing: for example, a principal name could be obtained from an environment variable. The only
security issue here is that the client must be sure that the list of acceptable values is a legitimate one. For
example, it must not be stored in such a way that a false server can modify it.

The task of maintaining a list of acceptable principal names can be simplified somewhat by having all
acceptable principals belong to a single group that is maintained by some trusted authority, such as a
system administrator. The client then needs to maintain only the name of the group, rather than the whole
list of principal names. To be sure that the server is authentic, the client need only check the principal
name returned by rpc_mgmt_inq_server_princ_name() against the group by calling
sec_rgy_pgo_is_member().

The following code fragment demonstrates this scheme.

is_valid_principal: The is_valid_principal() routine checks the group membership of the specified
principal.

/""""""
 "
 "
 " is_valid_principal -- Find out whether the specified principal is a
 " member of the group he's supposed to be.
 "
 "
 """"""/

boolean32 is_valid_principal(
unsigned_char_t "princ_name, /" Full name of principal to test. "/
unsigned_char_t "group, /" Group we want principal to be in. "/
unsigned32 "status)
{

unsigned_char_t "local_name; /" For principal's local name. "/
char "cell_name; /" Local cell name. "/
sec_rgy_handle_t rhandle; /" Local registry binding. "/
boolean32 is_valid; /" To hold result of registry call. "/

fprintf(stdout, "sample_client: Initial principal name == %s\n", princ_name);
fprintf(stdout, "sample_client: Initial group name == %s\n", group);

/" Find out the local cell name... "/
 dce_cf_get_cell_name(&cell_name, status);

/" Now bind to the local cell registry... "/
sec_rgy_site_open(cell_name, &rhandle, status);

/" Free the cellname string space... "/
 free(cell_name);

174 DCE Application Development Guide: Introduction and Style

/" Get the specified principal's local (cell-relative) name... "/
local_name = malloc(strlen((char ")princ_name));

sec_id_parse_name(rhandle, /" Handle to the registry server. "/
princ_name, /" Global (full) name of the principal. "/
NULL, /" Principal's home cell name returned here. "/
NULL, /" Pointer to UUID of above returned here. "/
local_name, /" Principal local name returned here. "/
NULL, /" Pointer to UUID of above returned here. "/

 status);
fprintf(stdout, "sample_client: Full principal name == %s\n", princ_name);
fprintf(stdout, "sample_client: Local principal name == %s\n", local_name);

/" And finally, find out from the registry whether that principal "/
/" is a valid member of the specified group... "/
is_valid = sec_rgy_pgo_is_member(rhandle,

 sec_rgy_domain_group,
 group,
 local_name,
 status);

/" Free the principal name string area... "/
 free(local_name);
 return(is_valid);

}

<.>

/" Resolve the partial binding... "/
 rpc_ep_resolve_binding(binding_h,
 sample_v1_@_c_ifspec,
 &status);

/" Find out what the server's principal name is... "/
 rpc_mgmt_inq_server_princ_name(binding_h,
 rpc_c_authn_dce_secret,
 &server_princ_name,
 &status);

/" And now find out if it's a valid member of our sample_servers "/
 /" group... "/

if (is_valid_principal(server_princ_name, (unsigned_char_t ")SGROUP, &status))
 {
 rpc_binding_set_auth_info(binding_h,
 server_princ_name,
 rpc_c_protect_level_pkt_integ,
 rpc_c_authn_dce_secret,
 NULL,
 rpc_c_authz_dce,
 &status);

 }

 Chapter 5. Security 175

 Authorization

Assuming either that authentication has taken place and succeeded, or that no authentication has taken
place, some server manager operation will then be invoked by the RPC runtime to handle an RPC call.
This operation should, as its first duty, make an authorization decision.

A server manager operation calls rpc_binding_inq_auth_client() to extract any authentication information
for the calling client and then makes a series of decisions. The usual model is that the server establishes
a set of access criteria and rejects the call if all criteria or not met. This is implemented as a series of
tests, the server rejecting the call at the first failed test. The possible tests are as follows:

1. Does the client binding provide any authentication information? For this purpose, the application
should check status after the call to rpc_binding_inq_auth_client(). If no authentication information
is provided (the status returned is rpc_s_binding_has_no_auth), then the authorization function must
decide whether this is acceptable. The authorization function may make its decision based on the
unauthenticated ACL type, as noted below.

If authentication information is provided, then the application should go on to ask:

2. Is the authentication service acceptable to the server? The application checks the authn_svc
parameter. Currently this check is redundant, since the only authentication service available is DCE
secret key (the authn_svc returned is rpc_c_authn_dce_secret)2.

The server may of course, simply be satisfied that the client is authenticated and check no further. Or
the server can:

3. Check that the protection level is acceptable. This too is a matter for negotiation between the client
and server applications, but it is important to begin by considering the runtime's mediation of the
protection level request. Recall that the client specifies a specific protection level for a binding,
whereas the server, when it registers its authentication information, specifies only the authentication
service it will use.

The chosen (agreed upon by the client and server) authentication service may not support all
protection levels for all protocols. Therefore, the runtime adopts the policy of translating the client's
protection level request to the next highest protection level actually supported by the authentication
service and protocol in use. This means that the server application will see a protection level greater
than or equal to the one requested by the client.

Most servers applications will establish a policy for the minimum acceptable protection level. In this
case, if the level returned by the server application when it calls rpc_binding_inq_auth_client() is
below the standard, the server manager fails the access request. It is perfectly possible, however, for
a server to require a lower level of protection. For example, a server may want to avoid the
considerable overhead of full data encryption and thus refuse to service requests for this level.

4. Check that the authorization service is acceptable. Once again, this is a matter for negotiation
between the client and server applications. The server application provides an access testing
mechanism for authorization services it supports. There are three possibilities:

� Authorization based on the client's principal name (rpc_c_authz_name)

2

There is considerable asymmetry in the use of the authn_svc values on the client call to rpc_binding_set_auth_info() and the
server call to rpc_binding_inq_auth_client(). If the client specifies rpc_c_authn_none, then the server sees a status of
rpc_s_binding_has_no_auth, and no meaningful value is returned for the authn_svc parameter. Furthermore, given that the
default authentication service is DCE secret key, if the client specifies rpc_c_authn_default, the server returns
rpc_c_authn_dce_secret from authn_svc. In other words, while the client can specify three different values for authn_svc, the
server can return only one.

176 DCE Application Development Guide: Introduction and Style

� Authorization based on the client's credentials (rpc_c_authz_dce). This involves checking the
client identity's permission set (extracted from an Access Control List (ACL) associated with the
object the client is attempting to access) against the required permissions for the requested
operation. The client's identity is extracted from its credentials, contained in its binding.

� The server may permit access without authorization checking (rpc_c_authz_none).

Name-based authorization is straightforward, but of very limited utility. In the simplest form, the
application compares the extracted name string with a set of permitted names. However, the
application is entirely responsible for maintaining and manipulating the set of permitted names
securely, a nontrivial task. For example, the application must provide for some administrative way to
update the set of permitted users. Typically, this will require maintenance of a restricted access file in
some application-specific format. This is the kind of administrative overhead that applications should
be designed to avoid.

If the server application is willing to permit access by group and organization, it can somewhat offset
this difficulty by making a group or organization membership check for the specified principal name.
However, the basic objection remains that an application doing name-based authorization must
maintain and administer a private security namespace (consisting of principals, groups, and
organizations associated with access privileges). Since the credential-based (ACL) method is
designed to provide a general solution to this problem, it is much to be preferred. ACL based access
checking is described in the following sections.

If the authorization service requested is acceptable, the server application makes the appropriate
access tests as described in step 6.

5. Check that the server principal name specified by the client is acceptable. This check is useful for a
server that is running with more than one principal identity. The server may only want to allow the
operation under a specific principal identity. If the server is running with only one principal identity,
then this check is redundant.

6. Extract the client privileges and perform the appropriate access testing. The form of the client
privileges depends on the authorization service. The application needs to extract the privileges in the
correct format and pass them to the appropriate access tests.

Authorization using RACF-DCE Interoperability

When developing or modifying new or existing applications, you may want to use DCE security for client
authentication and a communications paradigm, such as DCE RPC (authenticated) or APPC (using
GSSAPI) for segmenting the client and server portions of the application.

An application developer may wish to use the authorization and auditing capabilities provided by RACF for
the server portion of a client-server application that resides on z/OS. In this case, the application requires
a mechanism to associate the occurrence of a DCE principal with the corresponding z/OS user ID.

RACF provides support for z/OS DCE through enhancements to the RACF user profile, and the addition of
a new general resource class. These enhancements enable RACF to maintain a subset of the DCE
principal information that is contained in the DCE registry. Through extensions to the RACF user profile,
and with the addition of a general resource class, RACF can maintain a linkage between a DCE principal,
and a z/OS user ID. The linkage between a DCE principal and a RACF user ID is known as
cross-linking. The cross-linking information placed in a RACF user profile DCE segment and the RACF
general resource class, DCEUUIDS, provides this information.

 Chapter 5. Security 177

Using Cross Linking Information: How does an application make use of DCE security and the
cross-linking information in RACF to obtain the z/OS user ID? The server does these steps:

1. The client and server must be at the DCE 1.1 level and be using DCE security.

2. The server application issues the rpc_binding_inq_auth_caller() and gets an opaque handle returned
that represents the client's authorization information.

3. The server application then issues sec_cred_get_initiator(), passing the opaque handle obtained
from the rpc_binding_inq_auth_caller(). Another opaque handle to a single DCE principal's identity
authorization information is returned. If DCE delegation has been used, there may be other identities
in the handle. (See z/OS DCE Application Development Guide: Core Components for a discussion
on delegation.) Therefore, this may or may not be the handle for the authentication information for the
client that issued the call to the application server on z/OS. If it is not the correct handle, and if the
identity information exists for the intermediate delegates of the client, another call must be made to
retrieve a handle to the next entry. The process for parsing the handle is discussed in step 5.

4. The z/OS application server then calls sec_cred_get_pa_data() passing in the opaque handle
obtained from sec_cred_get_initiator to get the Privilege Attribute Certificate (PAC) or Extended
Privilege Attribute Certificate (EPAC) for the initiator. This contains the principal name, principal UUID
and cell UUID.

5. The above assumes no delegation is involved. If the client is using delegation:

a. The server calls sec_cred_get_delegate in a loop until it returns sec_cred_no_more_entries.

b. If the call returns an opaque handle, sec_cred_get_pa_data() is called passing the opaque
handle in as input to retrieve the PAC or EPAC. The identity of each delegate in the chain is
checked this way.

6. After obtaining a principal's UUID and cell UUID, which are in binary format, the application server
invokes the uuid_to_string() function, passing the principal's UUID on input. This returns the string
format of the UUID. Invoke this API again to convert the cell UUID. For more information on the
above DCE APIs, see z/OS DCE Application Development Reference.

Using z/OS DCE and RACF Services Once the DCE client's UUID is known, the z/OS application
server has a number of choices of how to use z/OS DCE and RACF services for resource authorization:

� RACF maintains a subset of the DCE principal information that can be used to convert a DCE identity
(defined by DCE UUID) to a z/OS user ID. The z/OS application server can convert the DCE UUID to
a z/OS user ID by invoking the R_dceruid SAF callable service, z/OS UNIX convert_id_up(), or
__convert_id_np() C library function call.

� If the server is Authorized Program Facility (APF) authorized, or capable of executing in supervisor
state or system key (0-7), the z/OS application server can use the SAF services RACROUTE macro
instruction do any of the following:

– Create and delete a RACF security context

– Use SAF services to check accesses for resources that the z/OS application server manages.

– Customize a task (task control block) with the RACF identity of the client so decisions on resource
access are based on the identity of the client.

� If the server application is not APF authorized and does not execute in supervisor state or a system
key, the z/OS application server can do any of the following:

– Obtain the z/OS user ID associated with the client UUID by using the z/OS UNIX
convert_id_up(), or the C library function call __convert_id_np().

– Customize a thread with the identity of the DCE client, using the pthread_security_np() C library
call

178 DCE Application Development Guide: Introduction and Style

– Use the __check_resource_auth_np() C library function call (if the z/OS application server owns
the resource to which the client is requesting access) to centralize access control decisions in
RACF.

See z/OS DCE Application Development Guide: Core Components, z/OS DCE Application Development
Reference, and IBM C/C++ publications for more information on these APIs.

Other Uses for the Cross Linking Information: z/OS DCE provides support, called single
sign-on, which allows a user to log on to z/OS and invoke DCE applications without reauthenticating to
DCE. The cross-linking information in the RACF DCE segment is used to log the DCE principal in to
DCE. For more information on single sign-on, see z/OS DCE Administration Guide and z/OS DCE User's
Guide.

 Client Credentials

A client's credentials may be implicitly passed on to an ACL manager via a call to
dce_acl_is_client_authorized(). Or the credentials may be extracted from the client binding by a call to
rpc_binding_inq_auth_client() and then passed on to an ACL manager via a call to
sec_acl_mgr_is_authorized(). In the latter case, there is some additional complication in the case that
the client specified no authentication. If the server supports credential-based authorization, it should
handle this case by testing for unauthenticated access via the ACL manager. However, no credentials are
returned from rpc_binding_inq_auth_client() in this case. The convention is to set the pac argument to
NULL in this case ((rpc_authz_handle_t)@). ACL managers that follow the recommended policies will test
for unauthenticated access in the case of such a null handle.

Null credentials are not the same thing as anonymous credentials. Anonymous credentials are simply
credentials for the well-known anonymous user UUID. They are tested in the normal way by the ACL
manager against permissions for the anonymous user in the relevant ACL.

The following code fragment shows the necessary steps:

 rpc_authz_handle_t pac;

/" Get the client's credentials... "/
rpc_binding_inq_auth_client(. . . PAC . . &status);

/" If there is no authentication information, set up a set of null "/
 /" credentials... "/

if (status == rpc_s_binding_has_no_auth)
 {

pac = (rpc_authz_handle_t)@;
 }

/" And now test the client's possession of the required permissions "/
/" by passing its credentials (along with other pertinent data) to "/
/" the following call... "/
sec_acl_mgr_is_authorized(. . . (sec_id_pac_t")pac . . .);

 Chapter 5. Security 179

Access Control Lists

Authorization decisions depend on the following information:

privilege attributes: A set of principal and group names qualified by the cell name in which the
principals and groups exist.

This information comes from the entity (client) that is attempting to perform
the operation in question.

ACL privilege attribute entries:
This is the ACL. It consists of a list of entries, each of which consists of an
entry type, a key, and a permissions set, which taken together describe what
permissions a particular entity possesses for the object to which the ACL is
attached.

The ACL is looked up by the server through which the client is trying to
perform the operation.

ACL mask entries: These consist of two entry type:permissions set pairs.

requested permissions: A permission set which describes the permissions that a client must possess
in order to perform the requested operation. The server itself calculates this
information.

There are two levels of semantics/policy to be considered here. One is the semantics of privilege
attributes, for which we specify a strict (POSIX compliant) policy in the form of an access checking
algorithm. This is embodied in the default access checking algorithm provided by the ACL library. The
second is the semantics of permissions. Ultimately these depend on the ACL manager and the kinds of
objects it protects. However, some recommendations for keeping permissions as intuitive and consistent
across applications as possible are offered in the following subsection.

Permissions Semantics Recommendations: The basic model used for access checking is to
iterate through a sequence of ACL privilege attribute entries for each member of the requested
permissions set, looking for the first match with a privilege attribute (and possibly ANDing the result with
the appropriate ACL mask entries (mask_obj and unauthenticated). Entry types are checked in essentially
the following order:

 1. [user_obj]

 2. user

 3. foreign_user

4. [group_obj], group, foreign_group

 5. other_obj

 6. foreign_other

 7. any_other

In actual practice, the bracketed [user_obj] and [group_obj] entry types are ignored by the access
checking algorithm implemented by the DCE ACL library. The reasons for this will be explained shortly.
The access check is made at the first match, effectively giving precedence to the most specific match.
The group entries are unordered so the match is made against the union of all group entries. This
precedence allows explicit inclusion and exclusion of permissions depending on whether a more restrictive
set of permissions is matched before or after a less restrictive set.

Except for the user_obj and group_obj entry types, the ACL entry types have semantics clearly defined
according to the specificity and the cell of the principals referred to. In the local cell, user is the most

180 DCE Application Development Guide: Introduction and Style

specific, referring to some specific local principal. The group entry type refers to a specific set of
principals. The other_obj type refers to other local principals not accounted for by user and group entries.

The user and group entries are extended to foreign cells by foreign_user and foreign_group. These are
user and group identifiers that include a cell name. Strictly speaking, this distinction between the local and
foreign cells is not required, since user and group entries implicitly contain global names (that is, the
global name of the local cell is implicitly known.) The user and group entries are therefore really an
implementation convenience for principals and groups in the local cell.

The other_obj entry is extended by foreign_other, which is a list of cell names.

Finally, principals that do not meet any of the above criteria can be authorized as any_other. The
other_obj, any_other, and foreign_other types are distinguished by cells: other_obj applies to the local cell,
foreign_obj applies to specified foreign cells, any_other applies to any cell.

The user_obj and group_obj types have less straightforward semantics. They refer to a special principal
and group that must be known to the ACL manager “out of band”: that is, they cannot be determined from
the ACL entry itself. The semantics of the mask_obj, which is applied to everything except the user_obj
and other_obj entries, are also complicated. The mask_obj is implemented to permit POSIX ACLs to
more or less maintain UNIX semantics for 000 permissions.

In general, the use of user_obj and group_obj is discouraged: they unnecessarily create a “special” user,
thus complicating the otherwise straightforward semantics of ACLs. Unless you are implementing a file
system, you probably do not need these types. (The other_obj type is unobjectionable since it has well
defined semantics.) Similarly, the use of mask_obj is discouraged because of its awkward semantics.

Thus it is recommended that you use only types from the following subset of entry types:

 1. user

 2. group

 3. other_object

 4. foreign_user

 5. foreign_group

 6. foreign_other

 7. any_other

These types allow for the most specific to the most general principals, both for local, specific foreign cells,
and for unspecified foreign cells.

The DCE ACL library ignores user_obj and group_obj, because there is no generic way to determine the
user and group “owners” of an arbitrary ACL protected object: the semantics of ownership are
application-specific. However, since these types are not recommended for general use anyway, their
absence should not be a serious limitation for most applications that use the DCE ACL library.

 Chapter 5. Security 181

 ACL Managers

DCE entities expect to be able to access other DCE entities' objects' ACLs through a standard set of DCE
routines, knowing nothing more than the names of the objects. The “names of the objects” are in the form
of Cell Directory Service (CDS) pathnames.

The DCE ACL library is an implementation of the remote ACL (rdacl) interface, designed in such a way as
to allow any DCE application to use it instead of having to implement the interface itself. In DCE 1.0,
applications that wished to use the DCE ACL functionality had to implement the full remote interface
themselves; in DCE 1.1 this is no longer true. Once an application has registered certain information with
the ACL library (see step 2 in “The Requirements” on page 183), its ACL management information will be
hooked into the remote ACL implementation routines that the DCE ACL library consists of.

Of course, an application still must take care of the details of storing and retrieving its ACLs (though these
tasks are now made much easier by the DCE Backing Store library routines), setting up definitions that
determine how its ACLs are interpreted, and so on. Practical examples of how to do these things can be
found in the DCE example application sample, which is explained in the following sections.

For more detailed information about the interfaces mentioned below, see the information about the DCE
Backing Store and the Access Control List Application Program Interface in the z/OS DCE Application
Development Guide: Core Components.

Who Does What?: In a properly-setup application ACL manager, who does what? That is, what
does the application code have to do about ACLs, and what is left up to the ACL library?

The DCE Security Service ACL API consists of the following routines:

 � sec_acl_bind()

 � sec_acl_bind_to_addr()

 � sec_acl_calc_mask()

 � sec_acl_get_access()

 � sec_acl_get_error_info()

 � sec_acl_get_manager_types()

 � sec_acl_get_mgr_types_semantics()

 � sec_acl_get_printstring()

 � sec_acl_lookup()

 � sec_acl_replace()

 � sec_acl_test_access()

 � sec_acl_test_access_on_behalf()

As their names suggest (full descriptions can be found in the z/OS DCE Application Development
Reference), these routines are what DCE clients call to use and manipulate ACLs, namely: bind to an
object's ACL; retrieve an ACL; replace (that is, write to) an ACL; test (via its ACL) access to an object, and
so on.

A properly-setup DCE application does not have to implement any of these operations; they are all taken
care of by the remote ACL implementations in the DCE ACL library. The only exception to this statement
involves the binding operation. The application must register a routine that can be called by the ACL
library whenever necessary to make up a complete binding to a specific ACL (this involves returning an

182 DCE Application Development Guide: Introduction and Style

ACL UUID, as will be seen below). This is the application's “hook” into the ACL library implementations:
the registered routine will always be called during a binding operation on any of the application's ACLs,
and once it has given the library a binding to the desired ACL, the library routines can perform any
requested operation with it.

The application is thus not responsible for implementing any ACL interface operations. What the
application is responsible for is:

� Setting up the necessary ACL data types and descriptions.

� Supplying a routine that resolves object names into ACL UUIDs.

� Setting up persistent databases in which the ACLs can be stored and retrieved.

� Initializing the ACLs for all existing objects.

The purpose of the following sections is to describe how these requirements can be fulfilled.

The Requirements: In order for a DCE application to use the ACL library routines for ACL
management, the following things must be true of its server code:

1. There must be a procedure that can take the valid name of an object and return that object's ACL
UUID to a caller. This typically is accomplished by (first) looking up an object UUID in a
name-indexed database and then (secondly) extracting the ACL UUID from the object state
information, which was looked up in a database indexed by object UUIDs. The databases, of course,
must be set up and maintained by the application. Clients to bind to the objects through a CDS
“junction” at the server's entry.

2. The application's object name resolver has to be registered into the DCE runtime remote ACL (rdacl)
interface mechanism, so that the DCE routines (such as sec_acl_bind()) and the acl_edit command
can access it.

This is the server object name resolution procedure described in item 1. acl_edit accepts a (CDS
entry) name which it expects to be able to resolve into an object which has an ACL it can access. For
this to be so, the application server must register a routine (with the rdacl interface UUID) which,
when called by acl_edit with an object name, will be able to return to acl_edit the information it needs
(that is, a UUID) to get the ACL itself. In other words, the routine must be able to turn an object name
into an ACL UUID.

3. A persistent database in which to store the ACLs must be created. (The database must be compatible
with the interface that the Security routines use; that is, it must be created with the DCE Backing Store
library routines.)

4. The ACL database must be registered (together with a manager type UUID and a name-to-ACL UUID
resolver procedure) with the ACL library.

5. An “object type” (that is, manager type) UUID must be created to identify each of the application's ACL
categories (that is, the kind of object the ACL applies to, and hence the kind of ACL itself: what
permissions it can contain, and what they mean in regard to the object they protect). (The manager
type will also serve as an identifier for the ACL database that the ACLs themselves are stored in —
this however is internal to the ACL library.)

6. UUIDs to identify the objects must be created.

7. The ACLs themselves on the relevant objects must be created.

8. The ACLs must be stored, indexed by UUID, in the Backing Store database.

Setting up an ACL manager is a matter of making these eight things happen. The example application
shows the easiest way of accomplishing this, namely by using the DCE ACL library. See in particular the
routine server_acl_mgr_setup() in sample_server.c.

 Chapter 5. Security 183

Note, by the way, that discussing the details of setting up an ACL manager without first considering the
representation and management of the objects themselves is a very artificial thing to do. The excuse for
doing it here is that ACL managers are the subject of this section. However, keep in mind that ACLs are
only an adjunct to the objects they guard access to. In a real application one would never put the cart
before the horse by working out the details of ACL management before settling on the way object
management itself was to be done.

What Is an Object?: Network operations are like grammatical sentences: they must have a subject
(the client performing some operation), a predicate (the operation itself), and an object (the “thing” on
which the operation is performed). Although meaningful sentences can sometimes omit some of its
grammatical elements, a network operation must always have all three of its elements.

In any application, distributed or not, an “object” is any externally accessible resource which is under the
application's control. Objects can be anything: printers, files, other machines, data — it all depends on
the application. What these things have in common is that they must be accessed through the application
itself. Entities in a distributed application request the use of these resources, via clients, from the
application server; and the server normally decides whether or not to grant use of a resource to an entity
by examining the object's ACLs.

The object can have an existence quite independent of the application that manages it. On the other
hand, the state information associated with the object, which the application must have access to in order
to manage the object in a reasonable way, is maintained by the application and is useful only to it. This
information is stored in a backing store database, where each separate record normally contains the state
information for a single object. An object's ACLs qualify as “state information” for the purposes of this
discussion.

In the example application, the objects' state information is practically identical to the objects themselves,
since the latter seem not to exist at all except as the information stored in the backing databases.
However, this is only partly true. The sample_object object is indeed a dummy and exists only as a
pretext for showing how ACLs on objects are set up and manipulated. The server management object
(server_mgmt), however, is different: it really has a purpose, although it is an abstraction (that is, access
to an interface). It is used whenever a client attempts to execute a remote management operation on the
server. In the example application this happens when the client is invoked with the “kill” option.

Why Three Databases?: You might think that only one database would be required to hold the
object state information described above. Why, then, are three backing store databases employed in the
example application? The answer to this question has two parts.

First: It is true that only one database is needed to hold the object state information itself. The need for a
second database arises from the necessity of organizing the object information in more than one way, so
that it can be retrieved both by name and by object UUID. The object information is stored directly in a
database indexed by object UUIDs, and that is how it must be retrieved. However, application users will
specify resources by names, not UUIDs. In order to make this work, the application stores its objects'
UUIDs in a separate database indexed by their names. Thus any object's information can be retrieved, if
the object's name is known, by means of a two-step process involving (first) looking up an object UUID
from the name-indexed database, and (second) looking up the object information from the object
UUID-indexed database.

Secondly: There is a third database to hold only the objects' ACLs. Theoretically speaking, there is no
reason why the ACLs couldn't be held with the rest of the objects' information, in the object UUID-indexed
database. However, the application's ACLs must be accessible to the DCE ACL library routines, and
these routines expect a database, indexed by ACL UUIDs, containing only ACLs. This allows us, for
example, to call a DCE routine such as dce_acl_is_client_authorized() (see the sample_mgmt_auth()
callback routine in sample_server.c), passing the ACL manager type UUID and the ACL UUID, and get

184 DCE Application Development Guide: Introduction and Style

back an answer to some query about permissions — the library routine is able to go into the database and
access and read the ACL; we don't have to bother with that. It also allows the rdacl implementations in
the ACL library to do the same thing, since they have a full ACL binding (which includes a handle to the
database in which the ACL is stored).

Object Name Resolution Routine: Our application's “name-to-ACL UUID” resolution routine uses
the following algorithm:

1. Take the object name that has been passed to it and use it to look up the UUID that identifies the
object itself (in the name-indexed database).

2. Use the object UUID to retrieve the object information, which contains (among many other things) the
UUID that identifies the object's ACL (in the object UUID-indexed database).

3. Use the retrieved ACL UUID to retrieve the ACL itself (from the ACL UUID-indexed database). If the
manager types match, return the ACL UUID extracted in step 2 to the caller.

“The caller” is usually some routine in the ACL library. All it needs from the resolution routine is the ACL
UUID; with this it can retrieve the ACL itself and proceed to do whatever needs to be done with (or to) it.

What Is an ACL Manager?: A lot is said here and elsewhere about “ACL managers,” but you will
not find in the example application any specific routine or block of code with that name. So where exactly
is our example ACL manager? What does it consist of?

Conceptually, “ACL manager” is a way of referring comprehensively to the code and data present in an
application to support ACLs. Practically speaking, the “ACL manager” in the example application consists
of all the places in the code where dce_acl_is_client_authorized() is called to check a requestor's
authorization. This is done in sample_mgmt_auth() (in sample_server.c) and sample_call() (in
sample_manager.c).

Note that there are actually two ACL managers in the example application. In sample_call(), the client's
access to the sample_object is being checked, and the ACL manager type UUID passed to the call is
sample_acl_mgr_uuid. In sample_mgmt_auth(), on the other hand, the client's access to the
server_mgmt object is being checked, so the ACL manager type UUID passed there is
mgmt_acl_mgr_uuid.

Why Two ACL Managers?: The application has two ACL managers because it uses two different
kinds of objects. This circumstance is a little obscured by the fact there are only two objects used in the
application (in a “real” application, we might have expected many instances of sample_object, although
there would still of course be only one server_mgmt object). Still, sample_object and server_mgmt are
very different kinds of objects, and having access to one means something quite different from having
access to the other. sample_object is a dummy object with no independent meaning, but server_mgmt
represents access to the server's remote management routines, which involves such things as being able
to kill the server.

A practical sense of what this means can be had from looking at the two managers' ACL printstrings, near
the top of the sample_server.c file. These strings, which contain text representations of the full range of
permissions supported by the respective managers, show that there are many permissions that are unique
to a single manager. For example, there is a m_inq_if permission (permission to execute the
rpc_mgmt_inq_if_ids() routine against the server). This permission makes sense only in the context of
the server_mgmt object. A manager type identifies what set of permissions applies to a given set of
objects.

 Chapter 5. Security 185

How the ACL Library Routines Extract and Evaluate ACLs: One way of using ACLs to
evaluate an entity's authorization to do something is by making a call to the DCE library routine
dce_acl_is_client_authorized(). For example, there are two places in the example application where this
is done to check client access to the application's own objects:

� in sample_call() (in sample_manager.c)

This is an interface operation, called by the client.

� in sample_mgmt_auth() (in sample_server.c)

This is the remote management callback function.

(Similar routines are called remotely through the sec_acl...() routines.)

Evaluation takes the form of a call to the procedure, passing (among other things):

� The client (that is, requestor's) binding

� The ACL manager type UUID

� The ACL UUID

� The desired permission set

The routine, given these parameters, is able to find and open the correct ACL database in which the ACL
is held, extract the ACL, find the requestor's permission set (it determines who the requestor is from the
credentials buried in the client binding), and compare it with the set of required permissions. If the latter
can be found among the former, the routine will return a YES answer; if not, it will return a NO.

How does the library routine (especially when it is called, not from “inside” the application as noted at the
beginning of this section, but, say, by acl_edit) know how to access the correct ACL database from which
to extract and examine the ACL identified by the ACL UUID? The answer is that the application's
database will have become known to the caller in the course of establishing a binding to the server. (This
is done by calling the application's registered “resolver” routine; the library finds the right resolver routine
by calling all the resolvers that have been registered with it until it gets a successful return. It finds the
ACL manager type in the same way, since it calls each attempted resolver passing the manager type
UUID that was registered with it. See the sample_resolve_by_name() function in the sample_server.c
file.)

Backing Store Database Items and Headers: (Note that although backing stores are
necessary in implementing an ACL manager, their use is not limited to ACL management. Backing stores
are designed to be used for all kinds of persistent storage of distributed data. For more information about
the DCE Backing Store, see the z/OS DCE Application Development Guide: Core Components.)

As mentioned earlier, backing store databases are necessary for storing any information about the
application's objects that must be preserved between application server sessions. The example
application uses three such databases, as described in “Object Name Resolution Routine” on page 185.

From the point of view of the application that uses it, a database is characterized by the following two
things:

� How it is indexed

� What kind of data item (record) can be stored in it

The former is specified by a flag passed to dce_db_open() when the database is first created; the latter is
determined by the declarations you make in an .idl file.

186 DCE Application Development Guide: Introduction and Style

An example of defining a backing store database item can be seen in the sample_db.idl and
sample_db.acf files (note that the dce/database.idl file must be imported into the .idl file). A server stub
and a header file is generated from these files when the application is compiled. The purpose of the .idl
definitions is to establish the routine that will handle the transmission of the data items across the wire.
Note that we don't implement the conversion routine; we just declare it in the .idl file: IDL itself does the
rest, generating the necessary code in the client stub.

As has already been mentioned, the example application uses three databases. The most complex of
these is the object-indexed store (its handle is db_object). The other two, name-indexed (db_name) and
ACL UUID-indexed (db_acl), are much simpler. Each of the three is briefly described in the following
sections.

Object-Indexed Store: The example application maintains objects whose data consists of a simple
text string; however, the data type is also defined to contain a “standard header.” The standard header is
a structure defined in dce/database.idl. Mostly it contains fields for a set of UUIDs that identify the:

 � Object itself

� Owner of the object

 � Owner's group

 � Object's ACL

� Default object ACL

� Default container ACL

The standard header is a convenient means of keeping track of all the object's associated UUIDs, without
having to define fields for them in one's own data structure. It is initialized by a call to the
dce_db_std_header_init() routine.

This is the only database whose data type is explicitly defined in the .idl file, because it's the only
database whose data type contains an application-defined field (that is, s_data). The data type is also
complex: that is, it contains both a header part and a data part. The other two databases have record
types that contain only (simple) data, no headers.

Name-Indexed Store: The name-indexed store contains only object UUIDs, indexed by the object
names that they are stored (and looked up) by. Note that there is no place where we actually “declare”
the data type of this database; all we do is declare the conversion routine (uu_convert(), in the IDL file).
The database is created without a header (the default), so all it will hold is UUIDs.

(If, for some reason, we did want to declare a header, then we would have to go through the steps of
declaring a separate complex data type for the store in the .idl file, wherein would be declared the header
type and the UUID type.)

ACL UUID-Indexed Store: The ACL database contains only ACLs; its records have no headers.
The records are indexed by ACL UUIDs. Here we do not even explicitly declare the conversion routine
(rdacl_convert); it is generated by IDL (from a definition in dce/dceacl.idl). All we have to do is pass the
routine's name to the dce_db_open() call that opens this database.

Note that this is the database that the ACL library has to have access to; this access is set up by a call to
dce_acl_register_object_type(), which registers a manager type + database + resolver_routine
combination. The registration then allows the ACL library to derive any or all of these three things from an
object name (the application's resolver routine has to help out in this, of course).

 Chapter 5. Security 187

ACL Manager Coding Example: The following subsections contain extracts from the DCE
sample application sample. The subsections below contain only the ACL manager code portions of the
server application.

In order to save space and to improve the readability of the text, the code shown below has been slightly
edited: all status checks, and all calls to the DCE serviceability interface (to print or log status or
informational messages), have been removed.

Data Definitions: The following code consists of all ACL manager-related data and other definitions
for the sample server application.

#define mgmt_perm_inq_if sec_acl_perm_unused_@@@@@@8@
#define mgmt_perm_inq_pname sec_acl_perm_unused_@@@@@1@@
#define mgmt_perm_inq_stats sec_acl_perm_unused_@@@@@2@@
#define mgmt_perm_ping sec_acl_perm_unused_@@@@@4@@
#define mgmt_perm_kill sec_acl_perm_unused_@@@@@8@@

/" The constants below come from aclbase.h (aclbase.idl)... "/
#define OBJ_OWNER_PERMS sec_acl_perm_read | sec_acl_perm_write \

| sec_acl_perm_delete | sec_acl_perm_test \
| sec_acl_perm_control |

 sec_acl_perm_execute

#define ALL_MGMT_PERMS mgmt_perm_inq_if | mgmt_perm_inq_pname \
| mgmt_perm_inq_stats | mgmt_perm_ping \
| mgmt_perm_kill | sec_acl_perm_test \

 | sec_acl_perm_control

/" These two UUIDs could be treated as "well known": i.e. applications "/
/" that use the same ACL manager for mgmt operations can use these... "/

uuid_t mgmt_acl_mgr_uuid = {/" @@6@f928-bbf3-1d35-8d7d-@@@@c@d4de56 "/
@x@@6@f928, @xbbf3, @x1d35, @x8d, @x7d, @x@@, @x@@, @xc@, @xd4, @xde, @x56

};

uuid_t mgmt_object_uuid = {/" @@573b@e-bcc2-1d35-a73e-@@@@c@d4de56 "/
@x@@573b@e, @xbcc2, @x1d35, @xa7, @xe3, @x@@, @x@@, @xc@, @xd4, @xde, @x56

};

/" These UUIDs are specific to this server... "/
/" Some ACL UUIDs that will be globally used: "/
uuid_t mgmt_acl_uuid;
uuid_t sample_acl_uuid;

/" The UUID of the sample ACL manager: "/
uuid_t sample_acl_mgr_uuid = { /" @@1a15a9-3382-1d23-a16a-@@@@c@d4de56 "/

@x@@1a15a9, @x3382, @x1d23, @xa1, @x6a, @x@@, @x@@, @xc@, @xd4, @xde, @x56
};

/" A UUID for a sample object: "/
uuid_t sample_object_uuid = {/" @@415371-f29a-1d3d-b8c8-@@@@c@d4de56 "/

@x@@415371, @xf29a, @x1d3d, @xb8, @xc8, @x@@, @x@@, @xc@, @xd4, @xde, @x56
};

/" The mgmt printstrings could be treated as standard for "/
/" a standard mgmt ACL manager... "/
sec_acl_printstring_t mgmt_info = {"mgmt", "Management Interface"};

sec_acl_printstring_t mgmt_printstr[] = {
 { "i", "m_inq_if", mgmt_perm_inq_if },
 { "n", "m_inq_pname", mgmt_perm_inq_pname },
 { "s", "m_inq_stats", mgmt_perm_inq_stats },

188 DCE Application Development Guide: Introduction and Style

 { "p", "m_ping", mgmt_perm_ping },
 { "k", "m_kill", mgmt_perm_kill },
 { "c", "control", sec_acl_perm_control },
 { "t", "test", sec_acl_perm_test }
};

sec_acl_printstring_t sample_info = {"sample", "Sample RPC Program"};

sec_acl_printstring_t sample_printstr[] = {
 { "r", "read", sec_acl_perm_read },
 { "w", "write", sec_acl_perm_write },
 { "d", "delete", sec_acl_perm_delete },
 { "c", "control", sec_acl_perm_control },
 { "t", "test", sec_acl_perm_test },
 { "x", "execute", sec_acl_perm_execute }
};

/" These are the two entry point vectors that are explicitly initialized: "/
extern rdaclif_v1_@_epv_t dce_acl_v1_@_epv;

server_get_local_principal_id: The server_get_local_principal_id() routine retrieves a
principal's UUID from the local cell registry.

/""""""
 "
 " server_get_local_principal_id -- Get (from the local cell registry) the
 " UUID corresponding to a principal name.
 "
 "
 " Called from server_create_acl() and server_acl_mgr_setup().
 "
 """"""/

void server_get_local_principal_id(
unsigned_char_t "p_name, /" Simple principal name. "/
uuid_t "p_id, /" UUID returned here. "/
unsigned32 "status) /" Status returned here. "/

{

char "cell_name; /" For local cell name. "/
sec_rgy_handle_t rhandle; /" For registry server handle. "/

/" First, get the local cell name... "/
 dce_cf_get_cell_name(&cell_name, status);

/" Now bind to the cell's registry... "/
sec_rgy_site_open(cell_name, &rhandle, status);

/" Free the string space we got the cell name in... "/
 free(cell_name);

/" Now get from the registry the UUID associated with the principal "/
/" name we got in the first place... "/

 sec_rgy_pgo_name_to_id(rhandle,
 sec_rgy_domain_person,
 p_name,
 p_id,
 status);

}

 Chapter 5. Security 189

server_create_acl: The server_create_acl() routine creates an ACL for a specified principal.

/""""""
 "
 " server_create_acl -- Create an ACL with some specified set of permissions
 " assigned to some principal user.
 "
 "
 " Called from server_acl_mgr_setup().
 "
 """"""/

void server_create_acl(
uuid_t mgr_type_uuid, /" Manager type of ACL to create. "/
sec_acl_permset_t perms, /" Permission set for ACL. "/
unsigned_char_t "user, /" Principal name for new entry. "/
sec_acl_t "acl, /" To return the ACL entry in. "/
uuid_t "acl_uuid, /" To return the ACL's UUID in. "/
unsigned32 "status) /" To return status in. "/

{

uuid_t u; /" For the principal's UUID (from the registry). "/

"status = error_status_ok;

/" Create a UUID for the ACL... "/
/" Note that the new UUID doesn't get associated with the entry in "/
/" this routine. It must happen in server_acl_mgr_setup()... "/

 uuid_create(acl_uuid, status);

/" Create an initial ACL object with default permissions for the "/
/" designated user principal identity... "/
dce_acl_obj_init(&mgr_type_uuid, acl, status);

/" Get the specified principal's UUID... "/
server_get_local_principal_id(user, &u, status);

/" Now add the user ACL entry to the ACL... "/
dce_acl_obj_add_user_entry(acl, perms, &u, status);

}

server_store_acl: The server_store_acl() routine stores an ACL and its related information in the
appropriate backing store databases.

/""""""
 "
 " server_store_acl -- Store ACL-related data.
 "
 "
 " The data is stored in databases that support a
 " name->object_uuid->acl_uuid style of ACL lookup.
 "
 "
 " Called from server_acl_mgr_setup().
 "
 """"""/

void server_store_acl(
dce_db_handle_t db_acl, /" ACL (UUID)-indexed store. "/
dce_db_handle_t db_object, /" Object (UUID)-indexed store. "/
dce_db_handle_t db_name, /" Name-indexed store. "/
sec_acl_t "acl, /" The ACL itself. "/
uuid_t "acl_uuid, /" ACL UUID. "/

190 DCE Application Development Guide: Introduction and Style

uuid_t "object_uuid, /" Object UUID. "/
unsigned_char_t "object_name, /" The name of the object. "/
void "object_data, /" The actual object data contents. "/

/" NOTE: NOT USED NOW. "/
boolean32 is_container, /" Are we storing a container ACL? "/
unsigned32 "status) /" To return status. "/

{

/" These two variables are used to hold UUIDs for the ACLs we will "/
/" need to create if we have a container ACL on our hands... "/
uuid_t def_object, def_container;

 sample_data_t sample_data;

"status = error_status_ok;

/" Null the contents of the object_data variable... "/
bzero(object_data, sizeof object_data);

/" If we have a container ACL, then we have to create and store the "/
/" special stuff associated with it-- namely, the container ACL "/
/" itself, and a default object ACL to go with it... "/

 if (is_container)
 {

/" Create a UUID for the default object ACL... "/
 uuid_create(&def_object, status);

/" Create a UUID for the default container ACL... "/
 uuid_create(&def_container, status);

/" Store the default object ACL into UUID-indexed store... "/
dce_db_store_by_uuid(db_acl, &def_object, acl, status);

/" Store the default container ACL into UUID-indexed "/
 /" store... "/

dce_db_store_by_uuid(db_acl, &def_container, acl, status);

 }

/" Store the plain object ACL into ACL UUID-indexed store... "/
dce_db_store_by_uuid(db_acl, acl_uuid, acl, status);

/" Store the ACL UUID(s) into a standard object header... "/
 dce_db_std_header_init(

db_object, /" Object database. "/
&(sample_data.s_hdr), /" Object data hdr. "/
object_uuid, /" Object UUID. "/
acl_uuid, /" ACL UUID. "/
&def_object, /" Default object ACL. "/
&def_container, /" Default container ACL. "/
@, /" Reference count. "/

 status);

/" Now store the object data keyed by object UUID... "/
if (strcmp(object_name, SAMPLE_OBJECT_NAME) == @)

 strcpy(sample_data.s_data.message,
"THIS IS AN OFFICIAL SAMPLE OBJECT TEXT!");

else if (strcmp(object_name, MGMT_OBJ_NAME) == @)
 strcpy(sample_data.s_data.message,

"THIS IS AN OFFICIAL MGMT OBJECT SAMPLE TEXT!");
 else
 strcpy(sample_data.s_data.message,

"I DON'T KNOW WHAT THIS IS!");

dce_db_store_by_uuid(db_object, object_uuid, (void ")&sample_data, status);

 Chapter 5. Security 191

/" Finally, store the object UUID keyed by the object ("residual") "/
 /" name... "/

dce_db_store_by_name(db_name, (char ")object_name, object_uuid, status);

}

server_acl_mgr_setup: The server_acl_mgr_setup() routine performs all the steps necessary to
set up ACL databases for the two object types used by the sample application.

/""""""
 "
 " server_acl_mgr_setup -- Open and, if necessary, create the ACL-related
 " databases, i.e.:
 "
 " 1. Set up a default ACL manager for the management interface.
 "
 " 2. Create an initial ACL. For servers that dynamically create
 " objects, this ACL is intended to be used as the ACL on the
 " "container" in which objects are created. If the server
 " manages static objects, this ACL can be used for some other
 " purpose.
 "
 "
 " Called from main().
 "
 """"""/

void server_acl_mgr_setup(
unsigned_char_t "db_acl_path, /" Pathname for databases. "/
dce_acl_resolve_func_t resolver, /" sample_resolve_by_name. "/
uuid_t acl_mgr_uuid, /" ACL manager UUID. "/
uuid_t object_uuid, /" Object UUID. "/
unsigned_char_t "object_name, /" Object name. "/
sec_acl_permset_t owner_perms, /" Owner permission set. "/
unsigned_char_t "owner, /" Owner name. "/
boolean32 is_container, /" Is this a container object? "/

/" == TRUE from main(). "/
/" [out] parameters: "/

dce_db_handle_t "db_acl, /" ACL-indexed store handle. "/
dce_db_handle_t "db_object, /" Object-indexed store handle. "/
dce_db_handle_t "db_name, /" Name-indexed store handle. "/
uuid_t "object_acl_uuid, /" Object ACL UUID. "/
uuid_t "mgmt_acl_uuid, /" Mgmt ACL UUID. "/

 unsigned32 "status)
{
 sec_acl_t new_acl;
 uuid_t machine_princ_id;

unsigned_char_t machine_principal[MAXHOSTNAMELEN + 2@];
 unsigned_char_t "uuid_string;
 boolean32 need_init;
 unsigned32 dbflags;

static sample_data_t datahdr;
 unsigned_char_t "acl_path_string;

sec_acl_permset_t permset = (sec_acl_permset_t) @;

"status = error_status_ok;
bzero(&datahdr, sizeof datahdr);

 uuid_create_nil(object_acl_uuid, status);

need_init = @;

/" Build the full pathname string for the db_acl database... "/

192 DCE Application Development Guide: Introduction and Style

acl_path_string = malloc(MAX_ACL_PATH_SIZE);
 strcpy(acl_path_string, db_acl_path);

strcat(acl_path_string, (unsigned_char_t ")"/");
strncat(acl_path_string, "db_acl", strlen("db_acl"));

/" If the thing doesn't exist yet, then we need to do some init- "/
 /" ialization... "/

if (access((char ")acl_path_string, R_OK) != @)
if (errno == ENOENT)

need_init = 1;

 /""/

/" Create the indexed-by-UUID databases. There are two of these: "/
 /" One for the ACL UUID-indexed store, and "/
 /" One for the Object UUID-indexed store... "/

dbflags = db_c_index_by_uuid;
 if (need_init)

dbflags |= db_c_create;

/" Open (or create) the "db_acl" ACL UUID-indexed backing store... "/
 dce_db_open(

(char ")acl_path_string, /" Filename of backing store. "/
NULL, /" Backing store "backend type" default == hash. "/
dbflags, /" We already specified index by UUID for this. "/
(dce_db_convert_func_t)dce_rdacl_convert, /" Serialization "/

/" function (generated by IDL). "/
db_acl, /" The returned backing store handle. "/

 status);

/" Set the global variable that records whether we actually have "/
/" opened the databases; this enables us to avoid calling the "/
/" dce_db_close() routine for unopened databases, which will cause "/
/" a core dump... "/
databases_open = TRUE;

/" For the object database, we need standard backing store headers "/
dbflags |= db_c_std_header;

 if (need_init)
dbflags |= db_c_create;

/" Now open (or create) the "db_object" store... "/
/" Build the full pathname string for the database... "/

 free(acl_path_string);
acl_path_string = malloc(MAX_ACL_PATH_SIZE);

 strcpy(acl_path_string, db_acl_path);
strcat(acl_path_string, (unsigned_char_t ")"/");
strncat(acl_path_string, "db_object", strlen("db_object"));

 dce_db_open(
(char ")acl_path_string, /" Filename of backing store. "/
NULL, /" Backing store "backend type" default == hash. "/
dbflags, /" Specifies index by UUID, and include standard "/

 /" headers. "/
(dce_db_convert_func_t)sample_data_convert, /" Serializa- "/

/" tion function for object data. "/
db_object, /" The returned backing store handle. "/

 status);

/" Create the indexed-by-name database... "/
dbflags = db_c_index_by_name;

 if (need_init)
dbflags |= db_c_create;

 Chapter 5. Security 193

/" Build the full pathname string for the database... "/
 free(acl_path_string);

acl_path_string = malloc(MAX_ACL_PATH_SIZE);
 strcpy(acl_path_string, db_acl_path);

strcat(acl_path_string, (unsigned_char_t ")"/");
strncat(acl_path_string, "db_name", strlen("db_name"));

 dce_db_open(
(char ")acl_path_string, /" Filename of backing store. "/
NULL, /" Backing store "backend type" default == hash. "/
dbflags, /" Specifies index by name. "/
(dce_db_convert_func_t)uu_convert, /" Serialization func- "/

/" tion for name data. "/
db_name, /" The returned backing store handle. "/

 status);

 free(acl_path_string);

 /""/

/" Now register our ACL manager's object types with the ACL "/
 /" library... "/

/" Register for the mgmt ACL... "/
 dce_acl_register_object_type(

"db_acl, /" Backing store where ACLs are to be stored. "/
&mgmt_acl_mgr_uuid, /" Type of ACL manager: this one is "/

/" for mgmt ACL operations; the UUID is defined "/
/" globally at the top of this file. "/
/" Why do we need this parameter? Well, the way "/
/" that the ACL library keeps track of the differ- "/
/" ent "sets" of ACL databases is by manager UUID. "/
/" The manager UUID is what the library will use "/
/" to figure out which ACL database to open and "/
/" retrieve a requested ACL's contents from. "/
/" Essentially what we are doing here is setting "/
/" up things so that calls to the library routine "/
/" dce_acl_is_client_authorized() can be made to "/
/" check our ACLs, giving only the ACL UUID and a "/
/" manager UUID to get the desired result. "/

sizeof mgmt_printstr/sizeof mgmt_printstr[@], /" Number of "/
/" items in mgmt_printstr array. "/

mgmt_printstr, /" An array of sec_acl_printstring_t struc- "/
/" tures containing the printable repre- "/
/" sentation of each specified permission. "/

&mgmt_info, /" A single sec_acl_printstring_t contain- "/
/" ing the name and short description for "/
/" the given ACL manager. "/

sec_acl_perm_control, /" Permission set needed to change "/
/" an ACL. Constants like these are defined "/
/" in <dce/aclbase.h>. "/

sec_acl_perm_test, /" Permission set needed to test an ACL. "/

resolver, /" Server function to get ACL UUID for a given "/
/" object; for us it's the "/
/" sample_resolve_by_name() call, below. "/
/" This routine is for the use of acl_edit: "/
/" it allows acl_edit to receive an object "/
/" name and come up with the ACL UUID; at "/
/" least that's what I think it's for. "/

NULL, /" Argument to pass to resolver function. "/
@, /" Flags -- none here. "/

194 DCE Application Development Guide: Introduction and Style

 status);

/" Now register for the regular ACL... "/
 dce_acl_register_object_type(

"db_acl, /" Backing store where ACLs are to be stored. "/
&sample_acl_mgr_uuid, /" Hard-coded at the top of this "/

 /" file. "/
sizeof sample_printstr/sizeof sample_printstr[@], /" Number "/

/" of items in our printstring array. "/
sample_printstr, /" An array of sec_acl_printstring_t "/

/" structures containing the printable rep- "/
/" resentation of each specified permis- "/
/" sion set. "/

&sample_info, /" A single sec_acl_printstring_t contain- "/
/" ing the name and short description for "/
/" the manager we're registering. "/

sec_acl_perm_control, /" Permission set needed to change an "/
 /" ACL. "/

sec_acl_perm_test, /" The permission you need to test an "/
/" ACL maintained by this manager. "/

resolver, /" Application server function that gives "/
/" the ACL UUID for a given object, when "/
/" presented with that object's name; for "/
/" us it's the sample_resolve_by_name() "/

 /" routine, below. "/
NULL, /" Argument to pass to resolver routine; "/

/" identified as the "resolver_arg" in the "/
/" code to that function below. "/

@, /" Flags -- none here. "/
 status);

/" If we're initializing, then we have to create all this stuff... "/
 if (need_init)
 {

/" Create the mgmt interface ACL... "/
 server_create_acl(

mgmt_acl_mgr_uuid, /" Create mgmt manager type ACL. "/
ALL_MGMT_PERMS, /" Permission set for new ACL. "/
owner, /" Principal name for new entry. "/
&new_acl, /" This will contain the new ACL. "/
mgmt_acl_uuid, /" This will contain the ACL UUID. "/

 status);

 /""/
/" For the management ACL we must add a default entry for "/
/" the machine principal so dced can manage the server. "/

/" Construct the name entry string... "/
 strcpy(machine_principal, "hosts/");

gethostname((char ")(machine_principal + 6), MAXHOSTNAMELEN + 1);
 strcat(machine_principal, "/self");

/" Get the machine principal's UUID... "/
 server_get_local_principal_id(
 machine_principal,
 &machine_princ_id,
 status);

/" Add a user entry for the machine principal to the new "/
 /" ACL... "/

permset = ALL_MGMT_PERMS;
 dce_acl_obj_add_user_entry(

 Chapter 5. Security 195

 &new_acl,
 permset,
 &machine_princ_id,
 status);

/" By default everybody must be able to get the principal "/
/" name. They should be able to ping too. So add an appro- "/
/" priate unauthenticated permissions entry to the ACL... "/
permset = mgmt_perm_inq_pname | mgmt_perm_ping;

 dce_acl_obj_add_unauth_entry(
 &new_acl,
 permset,
 status);

/" Add permissions for the any_other entry in the ACL... "/
permset = mgmt_perm_inq_pname | mgmt_perm_ping;

 dce_acl_obj_add_any_other_entry(
 &new_acl,
 permset,
 status);

/" Store the mgmt ACL... "/
 server_store_acl(

"db_acl, /" The ACL UUID-indexed store. "/
"db_object, /" The object UUID-indexed store. "/
"db_name, /" The name ("residual")-indexed store. "/
&new_acl, /" The ACL itself. "/
mgmt_acl_uuid, /" The mgmt ACL UUID. "/
&mgmt_object_uuid, /" The mgmt object UUID. "/
(unsigned_char_t ")MGMT_OBJ_NAME, /" The mgmt ob- "/

 /" ject name. "/
/" (void") "/ &datahdr, /" The data header = object "/

 /" contents. "/
@, /" Not a container ACL. "/

 status);

 /""/
/" Object ACL creation code... "/

/" Now create the object ACL... "/
 server_create_acl(

sample_acl_mgr_uuid, /" Create an ACL with this "/
 /" manager type. "/

owner_perms, /" Give it these permissions. "/
owner, /" Make this the principal name. "/
&new_acl, /" This will contain new ACL. "/
object_acl_uuid, /" This will contain new ACL UUID. "/

 status);

/" Null the data header... "/
bzero(&datahdr, sizeof datahdr);

/" Store the object ACL... "/
 server_store_acl(

"db_acl, /" The ACL UUID-indexed store. "/
"db_object, /" The object UUID-indexed store. "/
"db_name, /" The name ("residual")-indexed store. "/
&new_acl, /" The ACL itself. "/
object_acl_uuid, /" The object ACL UUID. "/
&object_uuid, /" The object UUID. "/
object_name, /" The object name. "/
/" (void") "/ &datahdr, /" The data header = object "/

 /" contents. "/
/" is_container "/ @, /" Is this a container "/

196 DCE Application Development Guide: Introduction and Style

 /" ACL? "/
 status);

/" Finally, free the space we were using... "/
 dce_acl_obj_free_entries(&new_acl, status);

/" ...end of object ACL creation code. "/
 /""/

 }
else /" ACL databases already exist; get the two ACL UUIDs... "/

 {

/" This is a call to sample_resolve_by_name() (see below); "/
/" it gives us the UUID of the ACL of the object whose "/
/" name we pass it... "/

 ("resolver)(
NULL, /" No client bind handle; local call. "/
object_name, /" Object whose ACL UUID we want. "/
@, /" Type of ACL we want UUID of. "/
&sample_acl_mgr_uuid, /" Object's manager type. "/
@, /" Ignored as far as we're concerned. "/
NULL, /" "resolver_arg"; unused. "/
object_acl_uuid, /" Will contain object ACL UUID. "/

 status);

 ("resolver)(
NULL, /" No client bind handle; local call. "/
(sec_acl_component_name_t)MGMT_OBJ_NAME, /" We want "/

/" mgmt object's ACL UUID. "/
@, /" Type of ACL we want UUID of. "/
&mgmt_acl_mgr_uuid, /" Object's manager type=mgmt. "/
@, /" Ignored as far as we're concerned. "/
NULL, /" "resolver_arg"; ignored. "/
mgmt_acl_uuid, /" Will contain mgmt ACL UUID. "/

 status);

 }

/" Set up remote management authorization to use the ACL manager. "/
/" Note that the first parameter to this call is the address of a "/
/" management authorization callback routine, which is defined "/
/" later in this file... "/

 rpc_mgmt_set_authorization_fn(sample_mgmt_auth, status);

/" Finally, register the rdacl interface with the runtime... "/
 rpc_server_register_if(

rdaclif_v1_@_s_ifspec, /" Interface to register. "/
NULL, /" Manager type UUID. "/
(rpc_mgr_epv_t) &dce_acl_v1_@_epv, /" Entry point "/

 /" vector. "/
 status);

}

 Chapter 5. Security 197

server_acl_mgr_close: The server_acl_mgr_close() routine closes the ACL databases.

/""""""
 "
 " server_acl_mgr_close -- Called at cleanup time to close
 " the three ACL databases.
 "
 "
 " Called from main().
 "
 """"""/

void server_acl_mgr_close(
dce_db_handle_t "db_acl, /" ACL UUID-indexed database. "/
dce_db_handle_t "db_object, /" Object UUID-indexed database. "/
dce_db_handle_t "db_name, /" Name-indexed database. "/
unsigned32 "status)
{

"status = error_status_ok;

/" Close the ACL UUID-indexed database... "/
 dce_db_close(db_acl, status);

/" Close the Object UUID-indexed database... "/
 dce_db_close(db_object, status);

/" Close the name-indexed database... "/
 dce_db_close(db_name, status);

}

server_rdacl_export: The server_rdacl_export() routine registers the remote ACL interface in the
local endpoint map.

/""""""
 "
 " server_rdacl_export -- Make the rdacl interface available
 " for ACL editors.
 "
 "
 " Note that we don't export to the namespace. Instead, the ACL editor
 " will typically bind to the server via some other entry that holds
 " the application-specific interface bindings. This must hold at least
 " one object UUID, and the same UUID must be put into the endpoint map
 " too. If not, ACL editors will have no way to distinguish the end-
 " points of this server from those of other servers on the same host
 " that also export the rdacl interface.
 "
 " Called from main().
 "
 """"""/

void server_rdacl_export(
rpc_binding_vector_t "binding_vector, /" Binding handles from RPC runtime. "/
uuid_vector_t "object_uuid_vector, /" Server instance UUID(s). "/
unsigned32 "status)
{

 uuid_vector_t my_uuids;

"status = error_status_ok;

/" Register the server's endpoints with the rdacl interface at the "/

198 DCE Application Development Guide: Introduction and Style

/" local endpoint map... "/
 rpc_ep_register(rdaclif_v1_@_s_ifspec,

binding_vector, /" Our binding handles from RPC runtime. "/
object_uuid_vector, /" Server instance UUID (only one). "/
(unsigned_char_p_t) "rdacl interface", /" Annotation. "/

 status);

}

server_rdacl_cleanup: The server_rdacl_cleanup() routine removes the remote ACL interface
information from the local endpoint map.

/""""""
 "
 " server_rdacl_cleanup -- Called at cleanup time to
 " unregister the rdacl interface.
 "
 "
 " Called from main().
 "
 """"""/

void server_rdacl_cleanup(
rpc_binding_vector_t "binding_vector, /" Binding handles from RPC runtime. "/
uuid_vector_t "object_uuid_vector, /" Server instance UUID(s). "/
unsigned32 "status)
{

"status = error_status_ok;

 rpc_ep_unregister(rdaclif_v1_@_s_ifspec,
 binding_vector,
 object_uuid_vector,
 status);

}

sample_mgmt_auth: The sample_mgmt_auth() routine assesses the authorization of any client
attempting to execute a remote management operation on the sample application server.

/""""""
 "
 " sample_mgmt_auth -- Management authorization callback function.
 "
 " This is the routine that is implicitly called to test authorization
 " whenever someone tries to use the mgmt interface to tinker with us
 " or our ACLs.
 "
 " The callback is set up by a call to rpc_mgmt_set_authorization() in
 " server_acl_mgr_setup().
 "
 """"""/

boolean32 sample_mgmt_auth(
rpc_binding_handle_t client_binding, /" Client's binding, whoever he is. "/
unsigned32 requested_mgmt_operation, /" What client is attempting to do. "/
unsigned32 "status)
{

boolean32 authorized = @;
 sec_acl_permset_t perm_required;
 unsigned_char_t "uuid_string;

"status = error_status_ok;

 Chapter 5. Security 199

/" Discover what permission is required in order to do what the "/
/" client is trying to do... "/

 switch (requested_mgmt_operation)
 {
 case rpc_c_mgmt_inq_if_ids:

perm_required = mgmt_perm_inq_if;
 break;
 case rpc_c_mgmt_inq_princ_name:

perm_required = mgmt_perm_inq_pname;
 break;
 case rpc_c_mgmt_inq_stats:

perm_required = mgmt_perm_inq_stats;
 break;
 case rpc_c_mgmt_is_server_listen:

perm_required = mgmt_perm_ping;
 break;
 case rpc_c_mgmt_stop_server_listen:

perm_required = mgmt_perm_kill;
 break;
 default:

/" This should never happen, but just in case... "/
 return(@);
 }

/" Okay, now check whether the client is authorized or not... "/
 dce_acl_is_client_authorized(

client_binding, /" Client's binding handle. "/
&mgmt_acl_mgr_uuid, /" ACL manager type UUID. "/
&mgmt_acl_uuid, /" The ACL UUID. "/
NULL, /" Pointer to owner's UUID. "/
NULL, /" Pointer to owner's group's UUID. "/
perm_required, /" The desired privileges. "/
&authorized, /" Will be TRUE or FALSE on return. "/

 status);

/" Return the result to the caller... "/
 return(authorized);
}

sample_resolve_by_name: The sample_resolve_by_name() routine derives the ACL UUID of an
object from its name.

/""""""
 "
 " sample_resolve_by_name -- take the name of an object, and return the
 " UUID of the object's ACL.
 "
 " The address of this function is passed (via the call to
 " server_acl_mgr_setup()) to the dce_acl_register_object_type() call. So
 " it gets implicitly called anytime someone tries to retrieve the ACL of
 " an object managed by the ACL manager we've set up.
 "
 "
 " Basically, the most a server needs is one resolve-by-name routine and
 " one resolve-by-UUID routine; the former gets you the desired object's
 " UUID; and the latter then will get you the object data itself (the way
 " this works can be seen in the body of this routine below). In most
 " cases, these routines will share the same name and UUID databases; if
 " they don't, the resolver_arg can be used to point to the correct other
 " database. Typically, the only difference between the managers is that
 " they use different print strings.
 "
 "
 " For the official statement of the signature of a dce_acl_resolve_func_t,

200 DCE Application Development Guide: Introduction and Style

 " see the dce_acl_resolve_by_uuid() manpage; that routine has the same
 " type.
 "
 "
 """""""/

dce_acl_resolve_func_t sample_resolve_by_name(
handle_t h, /" Client binding handle passed into the "/

/" server stub. sec_acl_bind() is used to "/
/" create this handle. "/

sec_acl_component_name_t name, /" The object whose ACL's UUID we want. "/
sec_acl_type_t sec_acl_type, /" The type of ACL whose UUID we want. "/
uuid_t "manager_type, /" The object's manager type. "/

/" NOTE that this parameter isn't used be- "/
 /" low. "/
boolean32 writing, /" "This parameter is ignored in OSF's im- "/

/" plementation" (from the manpage for "/
 /" dce_acl_resolve_by_uuid()). "/
void "resolver_arg, /" This is the app-defined argument passed "/

/" to dce_acl_register_object_type(); it "/
/" should be a handle for a backing store "/
/" indexed by UUID. Note that it isn't "/
/" used here though. "/

uuid_t "acl_uuid, /" To return ACL's UUID in. "/
error_status_t "st /" To return status in. "/
)
{

uuid_t u, "up; /" To hold the retrieved object UUID, and to "/
/" take a pointer to it. "/

 unsigned_char_t "uuid_string;
 sec_acl_t retrieved_acl;

/" The definition of the following is in the sample.idl file. "/
 /" "/

/" See the "Examples" section in the dce_db_open() manpage, "/
/" where the skeleton IDL interface for a server's backing "/
/" store is given. The data type definition (which is what "/
/" sample_data_t is) is there prescribed as consisting of a "/
/" dce_db_header_t, plus whatever server-specific data is "/
/" quired, all in a single structure. "/

 /" "/
/" Essentially it's a dce_db_header_t structure (with an "/
/" application-defined message string tacked on); this is "/
/" the object header data structure that is returned, e.g., "/
/" by dce_db_header_fetch(); in other words, this is the "/
/" thingie that actually contains the data "in" an object "/
/" held in an object store. "/

 sample_data_t dataheader;

"st = error_status_ok;

/" Get the object's UUID, which will be the key that we will use to "/
/" fetch this particular object's data in the call following this "/

 /" one... "/
dce_db_fetch_by_name(db_name, (char ")name, /" (void ") "/ &u, st);

up = &u; /" ...take the pointer to the key. "/

/" Using the UUID "key" that we just retrieved, get the dataheader "/
/" for the desired object (note that the data that one retrieves "/
/" with this routine can be anything; it depends on what we are "/
/" using the backing store for)... "/
dce_db_fetch_by_uuid(db_object, up, /" (void ") "/ &dataheader, st);

 Chapter 5. Security 201

/" Now, depending on the kind of ACL we're hunting for (i.e. ob- "/
/" ject, container, etc.), extract its UUID from the object's "/

 /" header structure... "/
 switch (sec_acl_type)
 {
 case 1:

"acl_uuid = dataheader.s_hdr.tagged_union.h.def_object_acl;
 break;
 case 2:

"acl_uuid = dataheader.s_hdr.tagged_union.h.def_container_acl;
 break;
 default:

"acl_uuid = dataheader.s_hdr.tagged_union.h.acl_uuid;
 }

/" Here it might be interesting to try retrieving the ACL itself, "/
/" and e.g seeing what its manager type is... "/

 dce_db_fetch_by_uuid(db_acl,
 acl_uuid,
 &retrieved_acl,
 st);

/" We are handling two ACL managers through this function, so we "/
/" have to make sure that we've extracted from the single ACL "/
/" database the correct ACL: i.e., one whose manager type UUID is "/
/" identical to the manager_type parameter we were passed: this is "/
/" the manager whose ACL the runtime is trying to bind to. So... "/
if ((manager_type != NULL) &&

(!uuid_equal(manager_type, &(retrieved_acl.sec_acl_manager_type), st)))
 {

/" Return a bad status... "/
"st = acl_s_bad_manager_type;
/" And no ACL UUID... "/
acl_uuid = NULL;

 return(@);
 }

}

202 DCE Application Development Guide: Introduction and Style

 Chapter 6. Binding

Binding is the process by which an RPC client establishes a relationship with a server that supports an
interface, object or some other resource the client is interested in. Since clients operate on server held
resources by making RPCs, binding can be thought of, specifically, as creating the state required for an
RPC to be made. In practice, the work of binding clients to servers normally involves name and endpoint
mapping services. Strictly speaking, however, neither of these services is required for binding, since
well-known bindings and endpoints can be used (in the form of string bindings). This chapter discusses
the underlying binding model, apart from the use of name and endpoint services. It forms an essential
introduction for the discussion of name and endpoint services that follows in Chapter 7, “Using the DCE
Name Service” on page 215.

The Binding Model
Binding refers to the establishment of a relationship between a client and a server that permits the client to
make a remote procedure call to the server. The term “binding” usually refers specifically to a protocol
relationship between a client and either the server host or a specific endpoint on the server host, and
“binding information” means the set of protocol and addressing information required to establish such a
binding. But, for a remote procedure call, such a binding occurs in a context that involves other important
elements, paralleling the notion of a binding in a local procedure call. In order for an RPC to occur, a
relationship must be established that ties a specific procedure call on the client side with the manager
code that it invokes on the server side. This requires both the binding information itself and a number of
additional elements (see Figure 119 on page 204). The complete list is as follows:

1. A protocol sequence that identifies the RPC and underlying transport protocols

2. An RPC protocol version identifier

3. A transfer syntax identifier

4. A server host network address

5. An endpoint of a server instance on the host

6. An object UUID that can optionally be used for selection among servers and/or manager routines

7. An interface UUID that identifies the interface to which the called routine belongs

8. An interface version number that defines compatibility between interface versions

9. An operation number that identifies a specific operation within the interface

 Copyright IBM Corp. 1994, 2001 203

Figure 119. Information Required to Complete an RPC

The binding information itself covers the first five elements of the list — the protocol and address
information required for RPC communications to occur between a client and server. (Figure 119 also
shows the object UUID as part of the binding information. This applies to clients, as explained in “Client
Binding Model” on page 205.) In RPC terminology, such a binding can be partial or full. A partial binding
is one that contains the first four elements of the list, but lacks an endpoint. A full binding contains an
endpoint as well. The distinction is that a partial binding is sufficient to establish communications between
a client and a server host, whereas a full binding allows communications to a specific endpoint on the
server host.

In order to complete an RPC call, all of the elements listed in 119 except the object UUID must be
present. The binding process consists of a series of steps taken by the client and server to create, make
available, and assemble all the necessary information, followed by the actual RPC, which creates the final
binding and routing using the elements established by the previous steps.

Server Binding Model

Figure 120 on page 206 and Figure 121 on page 207 show the set of relationships that a server must
establish to receive remote procedure calls. As the figure indicates, these are maintained in several
places:

� By the server runtime

� In the stub and application code

204 DCE Application Development Guide: Introduction and Style

� By the endpoint mapper

� By a name service

The steps that server applications take to establish these mappings are not discussed here since they are
fully documented in the z/OS DCE Application Development Guide: Core Components. Once
established, this set of relationships allows the server runtime to construct a complete binding, with routing
to a specific server operation, for a call that contains the following information:

� Full or partial binding information

� An interface identifier

� An object UUID, which may be nil

� An operation number

Note that the server runtime itself maintains only a very limited set of relationships: interface identifier/type
UUID/manager EPV and object UUIDs/type UUIDs. It is especially worth noting that the runtime maintains
no relationships between the protocol-address bindings it has created and any of the other information.
The server merely advertises the relationships it wants to export in a name service and registers them in
the endpoint map. Bindings are exported and registered along with interface identifiers and, possibly
object UUIDs.

When the exported and registered information is used by clients to find the server, client calls arriving at
the server endpoints should contain interface identifier/object UUID pairs that the server can, in fact,
service, although the RPC mechanism itself can provide no guarantee of this. This means that name
service and endpoint map operations, while they are not, strictly speaking, a required part of an RPC call,
usually play an important role in constructing bindings.

The indirect mapping from object UUID to type UUID to EPV (and hence to the manager called) also gives
the server some flexibility in organizing its resources based on object UUIDs. This is explained in “Call
Routing” on page 206.

Client Binding Model

To make a call, the client needs a compatible binding: that is, one that offers the interface and version
desired, uses a mutually supported protocol sequence, and if requested, is associated with a specific
object UUID.

Clients typically find compatible bindings by making calls to RPC API routines that search the name
service. Typically, the client specifies the interface and object UUIDs desired, and the runtime takes
responsibility for finding bindings with protocol sequences that it can use.

For each binding that the client imports, the runtime provides a server binding handle that refers to the
binding information maintained by the client runtime. This includes the protocol sequence and address
information for the server host and possibly includes an object UUID.

Once the client has found a compatible binding, it makes a call using the binding handle for that binding.
When the call is made, the client runtime has available to it the binding information and any object UUID
referred to by the binding handle. Also available in the stub code are the interface identifier of the
interface for which the call was made, and the operation number of the routine being called. Recall that
the last three items of this tuple of information — the object UUID/interface identifier/operation number —
are precisely what the server needs to route the call to a specific manager operation.

 Chapter 6. Binding 205

Figure 120. Server Binding Relationships 1

 Call Routing

Once the server and client have taken all the necessary steps to set up server and client side
relationships, the call mechanism can use them to construct a complete binding and call routing when the
call is made. When the client makes a call with a binding that lacks an endpoint, (which is typically the
case for bindings imported from the name service) the endpoint is acquired from the endpoint mapper on
the target host. The endpoint mapper finds a suitable endpoint by searching the local endpoint map for a
binding that provides the requested interface UUID, and if requested, object UUID.

The endpoint map interface and protocol information must match in order for an endpoint to be found, but
an object UUID match may not be required. A server can provide a default UUID match by registering the
nil UUID. Calls with a nil or unmatched object UUID will get the default endpoint.

206 DCE Application Development Guide: Introduction and Style

Figure 121. Server Binding Relationships 2

Once an endpoint is selected, a call can be routed to one of the endpoints being used by a compatible
server instance. The server can unambiguously select the correct interface and operation by using the
interface identifier and operation number contained in the call. Recall, however, that the RPC mechanism
makes it possible for a server to implement multiple managers for an interface. Hence it may be
necessary to select the correct manager. Manager selection is based on the object UUID contained in the
call. The selection mechanism depends on two of the relationships established by the server: the object
UUID/type UUID mapping and the interface ID/type UUID/manager UUID mapping.

 Chapter 6. Binding 207

For routing, the server provides a default path by registering a default manager for the nil type UUID.
Calls containing the nil object UUID, or any UUID for which the server has not set another type UUID, will
be directed to the default manager.

Once the manager is selected, the call is dispatched via the selected manager EPV using the operation
number contained in the call.

 Routing Policy

There are many ways in which clients and servers can arrange the details of binding among themselves,
including: how bindings are exported and imported, whether object UUIDs are used, and how object-type
mappings are established. High-level resource policy issues relating to the name service and endpoint
mapper are discussed in Chapter 7, “Using the DCE Name Service” on page 215. In the present chapter,
some of the lower-level routing policy questions that arise from the binding model itself will be discussed.
These, in fact, have a substantial impact on how the namespace is used by applications.

The most important issues concern the role of UUIDs in the binding model. Interface identifiers, which
consist of a UUID and version number, have a well-defined and unambiguous role. But object UUIDs are
somewhat overloaded by the binding model. An object UUID may be used to select bindings from the
name service, to select endpoints from the endpoint mapper, and to map a call to the correct manager
type within the server. Furthermore, a server may use object UUIDs in some application-specific way to
identify and manipulate the objects it manages.

There is great potential for conflict between the use of object UUIDs to select bindings and endpoints and
their use to identify objects and routes to manager types. This conflict is particularly evident in the case of
servers that provide so-called ubiquitous interfaces, such as the rdacl interface. Because many servers
on a host are likely to export such an interface, it is essential to have an object UUID to identify the
correct endpoint in the endpoint map. Without an object UUID, the endpoint mapper can only return the
endpoint of some server that exports the requested interface, very likely the wrong one.

An alternative strategy does exist: a client can call rpc_ep_resolve_binding() using a non-ubiquitous
interface that it knows the server of interest does export. The call to the ubiquitous interface can then be
made with the resolved binding. Clients often use this technique to call the remote rpc_mgmt routines.
Nevertheless, the objection remains that it is still impossible to select among endpoints of servers or
server instances that export the same nonubiquitous interface.

Object UUIDs as Endpoint Identifiers: The most straightforward solution is for a server to
export a UUID to the namespace where it functions as an unambiguous tag for the servers' endpoints.
Clients can find this UUID either by importing it from a named entry or it may be made well-known,
effectively becoming a stable, well-known tag for the server's volatile endpoints. When endpoint UUIDs
are well-known, they become useful for finding servers even when the client is interested in a
nonubiquitous interface. Exactly how servers export and clients find these UUIDs depends on the
resource model adopted, as discussed in Chapter 7, “Using the DCE Name Service” on page 215.

This obvious use of UUIDs as endpoint identifiers, however, potentially conflicts with their use as object
identifiers. According to the RPC binding model, when clients import bindings based on object UUIDs,
these UUIDs are incorporated into call bindings where they may used for endpoint selection, for manager
selection, and possibly for some application-specific purpose. If an application exports its object UUIDs to
the namespace, then they are used both to identify objects and to identify endpoints. This means that, at
a minimum, a server would need to maintain a potentially large number of mappings to the same
endpoints.

Moreover, especially when servers manage many objects or create them dynamically, clients will typically
know objects by names rather than by UUIDs. Servers can provide such mappings via the namespace

208 DCE Application Development Guide: Introduction and Style

itself by exporting each object UUID to a different namespace entry, but this even further complicates the
servers job of maintaining its exports and mappings.

The obvious solution to these problems is to have servers maintain their object UUIDs and name-to-object
UUID mappings internally. The basic RPC binding mechanism does not provide much support for this
approach: there is no generic way for servers to make objects or names available to clients except
through the name service. Also, a UUID used to identify a server endpoint is probably useless for call
routing to a manager type within a server. However, the higher-level object management interfaces
discussed in Chapter 7, “Using the DCE Name Service” on page 215 provide this functionality.

This leads to two important recommendations:

� Servers should export to the namespace at least one UUID as a tag for its endpoints, and should
register the UUID with the endpoint map.

� Servers which support multiple objects should also support the object management interface(s)
discussed in Chapter 7, “Using the DCE Name Service” on page 215, instead of exporting multiple
object UUIDs to the namespace.

 Binding Handles

Binding handles, although they appear as parameters of RPCs, are in fact purely local to the server or
client applications that use them. A binding handle is simply a reference to binding information that is
cached by the local runtime. The runtime uses this binding information to construct its side of a
client-server association. Even when a binding handle appears as an explicit parameter of an RPC, it is
not marshalled or unmarshalled as call data in the same way as other call parameters.

On the client side, a binding handle parameter simply permits an application to indicate explicitly to the
runtime which cached binding should be used for the call.

On the server side, a binding handle parameter provides a manager operation with a reference to cached
binding information for the calling client so that the manager can, for example, extract authorization
information about the client.

In calls to ubiquitous interfaces, such as the rpc_mgmt interface, partial bindings without an object UUID
are rarely adequate, since the endpoint mapper cannot know which server supporting the ubiquitous
interface is of interest to the client. The usual model is that the ubiquitous interface is not exported to the
namespace. Instead, the client imports bindings based either on another interface supported by the server
or an object UUID. If servers follow the recommendation to export at least one UUID with their bindings,
no additional preparation will be necessary to allow their clients to successfully call the ubiquitous
interfaces they offer. If they do not export the UUID, they will have to adopt the
rpc_ep_resolve_binding() method described in “Routing Policy” on page 208.

 Binding Methods

In view of what was said earlier about binding handles, the binding method chosen also will be a purely
local matter for the client application and stubs. For example, it is perfectly feasible for a server manager
to make explicit use of binding information via a binding handle parameter in a remote call, even though
the client does not use an explicit handle for the call.

DCE RPC provides the automatic, implicit, and explicit methods for clients to manage bindings for remote
procedure calls:

 � Automatic method

 Chapter 6. Binding 209

This is the simplest method of managing the binding for remote procedure calls of an entire interface.
With the automatic method, the server exports its binding information to a namespace, and the client
stub automatically manages a binding for the application code.

The automatic method completely hides binding management from client application code. The stub
imports the binding information and maintains a binding handle. The stub passes the binding handle
to the runtime with the remote procedure call, and the runtime uses the binding handle to retrieve the
associated binding information. If the client makes a series of remote procedure calls to the same
interface, the stub passes the same binding handle with each call.

With the automatic method, a disrupted call can sometimes be automatically rebound. The automatic
rebinding requires either that the remote procedure never begins to execute or that the operation is
idempotent. If the call meets either of these requirements, the RPC runtime automatically tries to
rebind the client to another server (if one is available).

 � Implicit method

This is a relatively simple method of managing a binding for an entire interface. With the implicit
method, prior to making any remote procedure calls, the client application code obtains server binding
information from a namespace or a string binding. The client assigns a server binding handle to a
global variable in the client application (for each interface using this method). When calling a remote
procedure using the implicit method, the client stub passes the specific interface's global binding
handle to the runtime.

Note: Multithreaded clients must be careful not to allow one thread to change the value of the shared
global binding handle while another thread is using it.

 � Explicit Method

This is a more complex yet more flexible method of managing a binding. As with the implicit method,
the explicit method requires that the client application code call runtime routines to initialize a binding
handle. In the explicit method, however, this binding handle is supplied by the application code as a
parameter to the remote procedure call. By allowing a client to manage bindings for individual calls,
the explicit method enables clients to meet specialized binding requirements.

The following figure shows the distribution of responsibility for binding management in applications for
each of the three methods. The top portion of each box represents the client application code written by
the developer. The bottom portion of each box represents the client stub code generated from an IDL
interface definition.

210 DCE Application Development Guide: Introduction and Style

Figure 122. Methods of Binding Management

You can see from this figure that with the automatic method, binding management belongs completely to
the client-stub code generated by the DCE IDL compiler. The implicit method provides the application
developer with some control over binding management without having to pass a binding handle as a call
argument. With the explicit method, the application developer is completely responsible for binding
management. The automatic method requires the server to store binding information in server entries in a
namespace; the implicit and explicit methods work with any source of binding information.

A client can use a combination of methods, for an individual interface or more than one interface. For
example, one interface might use the automatic method, another interface could use the implicit method,
and a third could use the explicit method. In addition, some procedures for the interfaces that use
automatic or implicit methods could use the explicit method instead. The method(s) of binding
management for an interface is specified using the interface definition, the Attribute Configuration File
(ACF), or both. In the interface definition, the explicit method can be specified for the whole interface, or
for an operation by declaring a binding handle (using the IDL type handle_t) as the first parameter of the
operation declaration.

The automatic and implicit methods are interface wide and therefore mutually exclusive; that is, for a given
interface, a client can use only one of these interface-wide methods. A client that uses either the
automatic or implicit method for an interface can also use the explicit method for some or all of the remote
procedure calls to that interface. If the remote procedure call has a binding handle parameter, the explicit
method takes precedence over either the automatic or implicit methods of managing bindings.

Explicit and implicit binding both give the client application means to select and modify the binding
information used by calls. Explicit binding allows the client to specify binding information per call. This
method may be established either by declaring a binding handle parameter as the first parameter for a call
in the IDL, or by applying the [explicit_binding] attribute in the associated ACF, either to the interface as
a whole, or to specific operations.

Implicit binding allows the client to establish a default binding for an interface. When the
[implicit_binding] attribute is applied to a data item in the ACF, then each call that does not specify an

 Chapter 6. Binding 211

explicit binding parameter (either in the IDL or via the [explicit_binding] attribute in the ACF) uses the
default binding information referenced by the implicit binding data item.

With automatic binding, the client stub finds a usable binding for each RPC. Automatic binding is the
default for any operation when the following three things are true:

� Implicit or explicit binding has not been specified in the ACF for the interface

� The call does not specify an explicit binding handle parameter

� The ACF does not specify explicit binding for the call

The semantics of automatic binding may differ between the first and subsequent calls on an interface.
When the runtime does not have a cached compatible binding, the stub will perform a namespace search
to find and import one. The imported binding will be cached for use in subsequent calls. If the
client-server connection for the cached binding fails, the client stub will attempt to find a new binding.
Therefore, it is possible that later calls will not be made on the same binding, and possibly will even be
made to a different server.

A server binding handle that the runtime provides directly to an application is a primitive binding handle.
To declare a primitive binding handle, application code uses the predefined RPC binding handle data type
rpc_binding_handle_t, and an interface definition uses the IDL data type handle_t. Primitive binding
handles offer a simple means of referring to binding information, which works in most cases. The
automatic method of binding management always uses primitive binding handles.

Applications that use the implicit or explicit methods of binding management can choose to store primitive
binding handles in an application-specific data structure known as a customized binding handle.
Customized binding handles enable application developers to manage binding information to meet the
special needs of a specific application. For example, a customized binding handle can be the handle of a
file whose records contain the information required to construct a string binding.

Using customized binding handles requires the application developer to perform several special tasks.
The RPC interface definition must include a declaration of the customized binding handle as a data
structure with a handle data type; this is done by using the handle attribute. The client application code
must contain specialized procedures that the client stub calls to obtain a primitive binding handle from the
customized handle and to release any resources, such as memory, used for the customized handle.

When a customized binding handle is used with the explicit method, responsibility for setting the binding
handle shifts to the client stub. The client code provides procedures for obtaining the primitive binding
handle from the customized handle and for freeing the primitive binding handle after the call completes.
However, it is the stub that calls these procedures to set and free the primitive binding handle.

Calls made with a context handle and no explicit binding handle also have automatic binding semantics.
That is, such calls will use the cached binding associated with the context handle. Of course, this binding
may have been constructed by the client application and passed, either as an explicit or implicit binding, to
the call that returned the context handle. Also, the stub will not attempt to renew such a cached binding if
the client-server connection fails. Even if the server is still running and the connection could be
reestablished, the server will have rundown the context it is holding for the client, so that the context
handle will no longer be valid. When implicit binding is in effect, a call made with a context handle and
without an explicit binding parameter will use the cached binding associated with the context handle rather
than the implicit binding.

The following table summarizes the binding semantics applied to a client operation:

212 DCE Application Development Guide: Introduction and Style

Authentication and Binding Methods

When a binding handle is selected automatically by the client stub, there is no way for the application to
specify authentication data. In principle, it would be possible to have the client authenticate itself to the
server in such a case, although a client that does not care about which server it calls obviously cannot
authenticate the server. In practice, calls made with automatic bindings are simply unauthenticated.
Therefore, if your application cares about authentication, it should avoid using automatic binding.

Table 7. Binding Semantics (Client Operation)

ACF
auto_handle
attribute?

ACF
implicit_handle
attribute?

ACF
explicit_handle
attribute on
interface?

ACF/IDL
explicit_handle
attribute on
operation?

IDL context
handle?

Binding
Semantics

No No No No No Auto

No No No No Yes Auto (context
handle)

No No No Yes No Explicit

No No No Yes Yes Explicit

Yes No No No No Auto

Yes No No Yes No Explicit

Yes No No No Yes Auto (context
handle)

Yes No No Yes Yes Explicit

No Yes No No No Implicit

No Yes No Yes No Explicit

No Yes No No Yes Auto (context
handle)

No Yes No Yes Yes Explicit

No No Yes No No Explicit

No No Yes Yes No Explicit

No No Yes No Yes Explicit

No No Yes Yes Yes Explicit

 Chapter 6. Binding 213

214 DCE Application Development Guide: Introduction and Style

Chapter 7. Using the DCE Name Service

Correct use of the DCE RPC Name Service Interface (NSI) is essential to the operation of a distributed
application, since NSI is the medium through which the application's distributed parts must find each other.
NSI works with named database entries which are hierarchically organized into subdirectories and
referenced by the familiar pathname convention.

Introduction to Using NSI

It is important to remember that names and objects are separate things in DCE. Consider, for example,
these two DCE names:

/.../tinseltown.org/dce/printers/macmillan

/.../tinseltown.org/dce/employees/goethe

These strings are not file names or file directory names; if you attempt to execute the ls command on
them, you will only get an error message. They are pathnames that identify entries in the DCE Directory
Service, which is DCE's database for storing distributed information. This database is often informally
referred to as “the namespace.”

The most important type of distributed information stored in the namespace is information that enables
RPC clients to rendezvous with RPC servers; it is called “binding information.” The Directory Service can
be used to hold other kinds of data too, but the main subject of the following discussions will be its use as
a binding repository.

The set of binding name entries is like a huge data structure of pointers from object names to object
locations, and the Directory Service is used mostly as a public DCE locational database, enabling servers
to advertise themselves and the objects and resources that they manage, and clients in turn to find and
access them. You should never confuse objects with their names; the two are separate things. In
particular, the directory service data associated with a name is held in one place (namely, the directory
server's database), while the data associated with the object named is held in other place (namely, the
object server's database).

How then, you might ask, are file names represented in DCE? Here are two examples of remote file
names:

/.../tinseltown.org/fs/doc/jones/app.gd/chap2.ps

/.../tinseltown.org/fs/doc/tolstoy/novels/war_and_peace/chap2.ps

As you may have guessed, these are also namespace entries, but the entries in this case refer to remote
files, and the entry name as a whole is the remote file name. What makes these names different from the
other two names given earlier is their third element

fs/

which identifies a “junction” from the DCE Directory Service's namespace into the DCE Distributed File
Service's own, separately maintained, namespace. In other words, /.../tinseltown.org/fs is the DFS file
server's DCE namespace entry. This means that any attempt by a file service client to access a file object
whose name begins with /.../tinseltown.org/fs will implicitly bind to this server, which will then be
responsible for finding, in its own namespace, the file object referred to by doc/jones/app.gd/chap2.ps or
doc/tolstoy/novels/war_and_peace/chap2.ps, and performing the requested operations on it.

 Copyright IBM Corp. 1994, 2001 215

 The UUID

Thus, it is a mistake to suppose that a name is identical to an object. The name merely points in the
direction of the object it names. Objects do, however, have identifiers. These are the 128-bit Universal
Unique Identifier (UUID) data structures, which are the identities that the DCE components recognize.
They are not usually seen by users, although they play a part in the object-finding process.

UUIDs are used within DCE to identify all sorts of things. From the standpoint of the application
programmer, they have two main uses: to identify objects and to identify interfaces.

 Object UUIDs

Although “object” is necessarily a rather vague term, a reasonable definition would be the following: an
object is any DCE entity that can be accessed by a client, and which can be represented by a namespace
entry and identified therein by a UUID. This category can include servers, devices, and other resources.
UUIDs that are used in this way are called “object UUIDs” in order to distinguish them from the other main
use of UUIDs, namely to identify interfaces (“interface UUIDs”). The difference between these two uses
consists only in the way the UUIDs are interpreted by the name service and RPC runtime. Note that it
follows from this discussion that an interface is usually not an object. Clients do not normally access an
interface as such; the interface is rather a description of the rules of access.

As far as the DCE RPC and name service mechanisms are concerned, it is enough if a client is brought
into contact with some server, as long as that server offers the service the client is looking for; in other
words, as long as the server offers the interface the client wants to use. To accomplish this rendezvous,
interface UUIDs are sufficient. They are also mandatory. There cannot be a client/server relationship
without an interface, and the entire RPC runtime mechanism is dependent on the concept of interfaces.

Object UUIDs are different. The RPC runtime usually does not care if they are present or not. But if they
are present, they activate various runtime mechanisms that allow clients and servers to be much more
specific (always within the bounds of a given interface) about what servers are bound to, and/or what
resources the servers will use to fulfill the clients' requests. How this works is explained later in this
chapter.

 Interface UUIDs

Every IDL-compiled interface specification has its own UUID associated with it. This interface UUID is
included by IDL-generated stub routines with every operation request (or return) sent over the network by
clients and servers. In this way receiving stubs ensure that they and the sending stubs are sharing
exactly the same interface. If the interface UUIDs are different, or are not present, then the remote call
will not be completed. But interface UUIDs, although required, play only a secondary role in a client's
finding a server that offers the interface. The main tool for this is NSI, which makes use of the DCE
Directory Service, as explained later in this part of the chapter.

Summary: Names and UUIDs

Both names and UUIDs identify objects. But names are separable from the objects they identify, and are
only as trustworthy as the binding information their entries contain. UUIDs, on the other hand, are not
separable from their objects. Once the desired binding information for an interface or an interface/object
combination has been found and used, the name that was used to retrieve it can be forgotten; it is of no
further use. This is not true of either interface or object UUIDs.

Note that names become completely unnecessary only if clients have some other means of obtaining valid
binding information for the desired service, such as string bindings.

216 DCE Application Development Guide: Introduction and Style

Figure 123 on page 217 illustrates how the information a client finds through a name is turned into
network contact with the object named.

Figure 123. How a Name Turns into an Object

Binding to an Object

The difference between reading a local file on a single machine and performing the same read on a
remote file in DCE is like the difference between reading information from a phone book yourself and
dialing an operator for the same information. The remote operation requires the addition of another active
entity that can be requested to perform it, since you cannot. Associated with every piece of remote data
available on a network is a remote server to manage that data and make it available. The user may not
see the server; even the client may be unaware of it, but it is there.

The DCE documentation often speaks of “binding to an object.” In reality, clients can bind only to servers,
which then may be requested to perform operations on objects that are under their management.
However, it is possible for a server to put bindings into namespace entries that are named for the objects
that it manages. Furthermore, these exported bindings can be tagged with object UUIDs in such a way
that incoming remote calls from clients can be applied by the server to the object whose name entry the
binding was read from (the details of this technique are described later in this chapter). When an
application uses this kind of binding model, it is reasonable to say that the client is logically bound to the
object, although it is physically always bound to the server that manages the object.

 Junctions

Namespace junctions are another example of the “hidden server” effect. The following remote file name
was discussed earlier:

/.../tinseltown.org/fs/doc/jones/app.gd/chap2.ps

and there it was explained that

doc/jones/app.gd/chap2.ps

is an entry in DCE DFS's own namespace, while

/.../tinseltown.org/fs

 Chapter 7. Using the DCE Name Service 217

is a DCE namespace entry. Suppose a user enters the following:

ls -l /.../tinseltown.org/fs/doc/jones/app.gd

The clerk agent program (called as a result of the user's entering ls) will bind to the remote file server via
its /.../tinseltown.org/fs DCE namespace entry, and pass to it the residual DFS entry name
doc/jones/app.gd, along with other parameters. The ls command behaves this way because the
underlying (VFS+ layer) system calls are coded that way. The DFS server then performs the request
(note that the details of interaction within DFS are somewhat more complex than implied by this
description). The user only types the command line; the rest is done by DCE, and a directory listing
appears on the user's screen.

The VFS+ system routines are used by all possible clients of DFS services (for example, ls and rm
commands, or fopen() and fclose() library routines). Because of this, and because they know about (and
bind to correctly) the remote file server at /.../tinseltown.org/fs, the transition from the DCE to the DFS
namespace is completely transparent to users. This is how junctions work. As long as all possible clients
handle a name that includes a junction correctly, the junction will not be perceptible to the clients' users.

A Junction Example

Figure 124 illustrates the principle of junctions. A junction server, which is reached normally through
binding information in the DCE namespace, maintains its own namespace of named objects. The junction
server's clients allow users to refer to these objects by actually concatenating the server's entry name and
an object's “internal” name. The client then breaks this string apart by contacting the server named in the
first part of the string, and passing to it the second part, which is a valid name within the server's
namespace. The client's user seems to access the object directly.

Figure 124. A Namespace Junction

The dashed lines in the above figure show the progress of the Client's efforts to get access to the desired
Object, which involves acquiring a binding to the Junction Server, making contact with it, and passing to it
the Object's Name. The solid line shows the apparent direct access to the Object that the Client's user
seems to enjoy. The dotted lines show other possible paths of access to the other Objects that the Server
manages.

Junction protocol is generally a private matter between an application's clients and servers. However, the
acl_edit command uses a generalized protocol.

218 DCE Application Development Guide: Introduction and Style

Junctions and the ACL Editor

The binding routines that acl_edit uses are discriminating enough to detect a junction anywhere in an
entry name that is passed to it. This allows a distributed application to have its own namespace for
objects with ACLs on them, rather than burdening the DCE namespace by separately exporting binding
information for every one of these objects. The separate objects have to be made publicly accessible
somehow because entities should be able to access ACLs directly, regardless of whether they happen to
already be in contact with the server that manages the ACLed object, and indeed regardless of whether or
not they happen to be a client of the particular server to which the objects belong.

Suppose, for example, a user enters

acl_edit /.../tinseltown.org/dce/dce_print/cotta

in order to interactively edit the ACL for the printer object cotta, where /.../tinseltown.org/dce/dce_print
is the namespace entry for a print server, and there is no /.../tinseltown.org/dce/dce_print/cotta entry in
the DCE namespace. The binding routine, sec_acl_bind(), which is called internally by acl_edit, receives
an error when it tries to bind to the object cotta. However, the DCE Directory Service also tells it how
much of the name it passed is valid. The sec_acl_bind() routine then retries the binding operation, this
time through the valid entry name (/.../tinseltown.org/dce/dce_print), and passes the residual part of the
name (cotta) as a parameter. Now it is up to the application ACL manager to interpret the residual name
correctly and find the requested ACL.

Name Service Terminology

DCE RPC NSI is an RPC-based interface that uses the DCE Cell Directory Service (CDS) as its database.
The NSI routines do not constitute a general interface into CDS as such; they are a set of specialized
routines whose purpose is simply to provide ways for RPC servers to advertise themselves to RPC clients,
and for clients to find and bind to them.

In fact there is no public general API (Application Programming Interface) to CDS. There is a general
CDS interface that is used internally by the DCE components, but applications normally access CDS
through NSI. Applications can get full access to CDS, if necessary, by using the XDS interface.

 CDS Entries

NSI uses a subset of the many possible kinds of CDS entries in order to accomplish its tasks. CDS
entries are characterized by the CDS attributes they have; each entry can have one or more such
attributes. Each separate attribute defines that entry's ability to contain one or more items of a particular
kind of simple or complex information.

The name service creates and uses CDS entries that use only the following four attributes:

binding The entry has a field that can contain one or more sets of binding information. When the field
is read, a binding handle that contains the necessary information from one of these sets is
returned, in no particular order.

object The entry has a field that can contain one or more object UUIDs. When the field is read, one
of the UUIDs is returned, in no particular order.

group The entry has a field that can contain a pool of one or more references to other (independently
existing) NSI entries; each time the field is read, one of these entries is returned. Different
entries are returned on successive reads, but the order of return is undefined. Note that the
“other NSI entries” referred to in the group can themselves be server or group entries. As a
result, the act of reading from a group attribute can, depending on the actual API routine called,

 Chapter 7. Using the DCE Name Service 219

lead to a series of nested operations. Any nesting is transparent to the client application, which
seems to perform a simple read and to receive the contents of a single entry in return.

profile The entry has a field that can contain one or more prioritized elements, each of which consists
of a reference to another (independently existing) NSI entry. When the field is read, the
elements are read in a specified order. The entry referred to in the element may itself be a
server or a group or a profile. As a result, any element may in fact, depending on the actual
API routine called, resolve on access to a nested path of referred-to entries. As with group
entries, this is transparent to the client application.

Although a single entry could contain both group and profile attributes (and for that matter, binding and
object attributes as well), it is not a good idea to mix attributes in this way because the results of importing
(reading) from such an entry are too indeterminate.

The typical name service entries are as follows:

server entry Contains a binding and an object attribute, making it suitable for containing the
necessary binding information for a single server.

group entry Contains a group attribute.

profile entry Contains a profile attribute.

There are no official names for hybrid entries that contain other combinations of attributes, which is
perhaps another reason for not creating such entries.

The general name for entries that contain any of these attributes is “NSI entries,” since they are a
by-product and tool of the NSI DCE RPC library routines.

CDS Entry Attributes

Within the DCE Directory Service, entry attributes such as the four previously described attributes are
identified by Object Identifiers (OIDs). This is an exception to the general rule that things in DCE are
identified by UUID.

OIDs are not seen by applications that restrict themselves to using only the name service routines
(rpc_ns_...()), but these identifiers are important for applications that use the X/Open Directory Services
(XDS) interface to create new attributes for use with namespace entries.

As was seen in the immediately preceding sections, the name service makes use of only four different
entry attributes in various application-specified or administrator-specified combinations. CDS, however,
contains definitions for many more than these, and attributes from this supply of already existing ones can
be added by applications to NSI entries through the XDS interface. Attributes that already exist are
already properly identified, so applications that use these attributes do not have to concern themselves
with the OIDs, except to the extent of making sure that they handle them properly.

A further possibility is that an application requires new attributes for use with namespace entries. Such
attributes can be created using the XDS interface. When it creates new attributes, the application is
responsible for tagging them with new, properly allocated OIDs.

Unlike UUIDs, OIDs are not generated by command or function call. They originate from the International
Organization for Standardization (ISO), which allocates them in hierarchically organized blocks to
recipients. Each recipient (typically an organization of some kind) is then responsible for ensuring that the
OIDs it received are used uniquely.

For example, the OID

220 DCE Application Development Guide: Introduction and Style

1.3.22.1.1.4

identifies the NSI profile entry attribute. This number was assigned by the Open Software Foundation out
of a block of numbers, beginning with the digits 1.3.22, which was allocated to it by ISO, and OSF is
responsible for making sure that 1.3.22.1.1.4 is not used to identify any other attribute.

When applications have occasion to handle OIDs, they do so directly, since the numbers do not change
and should not be reused. However, for users' convenience, CDS also maintains a file (called
/opt/dcelocal/etc/cds_attributes) that lists string equivalents for all the OIDs in use in a cell, in entries
like the following one:

1.3.22.1.1.4 RPC_Profile byte

This allows users to see RPC_Profile in output, rather than the mysterious 1.3.22.1.1.4. Further details
about the cds_attributes file and OIDs can be found in the “CDS Attributes File” section in z/OS DCE
Administration Guide.

Broadly speaking, the procedure you should follow to create new attributes on CDS entries consists of
three steps:

1. Request and receive, from your locally designated authority, OIDs for the attributes you intend to
create.

2. Update the cds_attributes file with the new attributes' OIDs and labels; that is, if you want your
application to be able to use string name representations for OIDs in output.

3. Using XDS, write the routines to create, add, and access the attributes.

Non-NSI attributes on NSI entries can be very useful, even though you cannot access the extra attributes
through the name service routines but must use XDS instead.

 Binding

In order to highlight the essentials of name lookup and storage and the management of binding
information, many details of DCE RPC operation are either greatly simplified in the following descriptions
or omitted altogether.

A binding is a package of information that describes how a client can contact and communicate with a
particular server. Although the underlying protocol that implements the communication can be
connectionless or connection-oriented, the relationship itself is still expressed as a binding.

Importing and Exporting Bindings

The name service exists to store server binding information into the cell namespace, and to retrieve that
information for clients. Using NSI, servers export their binding information to be stored under meaningful
names, and clients import these bindings by looking up those names. Thus, the locations of the servers
can change, but clients can continue to use the same names to get bindings to the servers. Figure 125
on page 222 shows how client and server use the name service.

 Chapter 7. Using the DCE Name Service 221

Figure 125. Client and Server Use of the Name Service

When a prospective client attempts to import binding information from a namespace entry that it looks up
by name, the binding is checked by NSI for compatibility with the client. This is done by comparing
interface UUIDs. The client presents an interface UUID when it begins the binding import operation; the
UUID of the interface being offered is exported to the name entry, but not in the binding handle itself, by
the server. If these interface UUIDs match, then the binding handle contained in the entry is considered
compatible by the RPC runtime and is returned to the client. If more than one handle is contained in the
entry (this is often the case), they are returned one by one on successive imports. NSI also checks for
protocol compatibility.

The import routines will return only client-compatible bindings, but a client can sift through the returned
bindings and make its own choice as to which ones to use, based on its own criteria. The technique by
which this is done consists of converting the bindings into string bindings, and then inspecting (or
comparing) the strings.

Note that binding handles do not include an interface UUID. Binding handles do contain a host address,
an endpoint, and an optional object UUID, among other things. The interface UUID is associated with the
interface's stub code, which inserts it into outgoing RPCs and checks it in incoming ones, thus
guaranteeing client/server operational compatibility. This allows binding handles to be used very flexibly.
Once a client has successfully bound to a server, it can utilize any of the interfaces that server offers,
simply by making the desired remote call.

 Summary

The mapping from name to server that occurs when bindings are imported from the namespace is indirect
because binding is a two-step process. First, the binding handle is obtained by lookup from a named
entry, and then the handle is used to reach a server. The crucial point is that the imported handle will not
usually contain a complete binding to a specific server (namely, the one that happened to export it).
Completion of the partial binding occurs later, when the client makes its first remote procedure call; the
RPC runtime uses UUIDs, not names, to determine how it should complete a binding.

222 DCE Application Development Guide: Introduction and Style

Partial Binding and the Endpoint Mapper

Binding handles imported by clients from the namespace normally contain only partial binding information.
The exported binding information is sufficient to locate the DCE Host daemon on the server's host (the
machine the server resides on), but it does not yet include a specific endpoint (UDP or TCP port number)
for the desired service on that host.

The reason for omitting dynamic endpoint information in exported binding handles is to avoid unnecessary
multiplication of accesses to the namespace. Since dynamically generated endpoints are reassigned
every time a server starts up, entering them into the namespace (and thus forcing CDS to propagate the
new information throughout the various directory replicas) would greatly increase namespace
housekeeping chores.

Thus, the last step in the binding process is obtaining an endpoint. The step is performed transparently as
far as the client is concerned. It is accomplished by the endpoint mapper service of the DCE Host
daemon, dced, when the client makes its first call to the partially bound-to server. The endpoint mapper
service manages its own private database of server endpoints for the host on which it is located. The
endpoints are registered by the servers as part of their startup routine.

The binding information that accompanies a prospective client's first remote procedure call takes that call
to the well-known endpoint of dced on the exporting server's host machine. The endpoint mapper now
takes over. It looks up a valid endpoint for the requested service, copies it into the binding handle, and
transfers the call to that endpoint. Subsequent calls from the client, which now has a binding with one of
the server's endpoints, will bypass the endpoint mapper.

The endpoint mapper picks an appropriate endpoint for an incoming partial binding by matching interface
UUIDs by default. Any endpoint that has been registered under an interface UUID that matches the
incoming interface UUID, which identifies the interface requested by the prospective client, is eligible for
selection. This mapping process is called “forwarding” when it occurs with connectionless protocols, and
“mapping” when it occurs with connection-oriented protocols.

Figure 126 shows the endpoint mapper service completing a binding.

Figure 126. The Endpoint Mapper Service Completes a Binding

There is an exception to this scheme. Some servers are designed to occupy well-known addresses. The
DCE host daemon itself, dced, is reached in this way, making its accessibility independent of whether or

 Chapter 7. Using the DCE Name Service 223

not the namespace is accessible. The endpoint(s) of a well-known address do not change; they are
usually specified in the application's interface specification (contained in its .idl file). Bindings to servers
that use well-known endpoints are already complete at the time of import; the endpoint mapper never sees
these bindings.

Interface Ambiguity and Partial Bindings

The interface UUID, which was generated by the IDL compiler, uniquely identifies the set of operations
that the client will access through that interface. In short, it identifies the interface. An interface UUID
may also happen to identify a server which offers that interface. But if more than one server on the same
host offers the same interface (which could easily be the case), the interface UUID alone will not be
sufficient to identify a specific server. The result is that if a remote call comes in with such an ambiguous
interface and a partial binding, the endpoint mapper will have to randomly choose any one of its eligible
registered endpoints, complete the binding with it, and send the call on to that server.

Imagine several print servers residing on the same machine (see Figure 127). Each server manages a
group of printers that share a common physical location. All the printers in room “A” are managed by the
“A” print server, all the printers in room “B” by the “B” print server, and so on. Now suppose each of these
servers has a separate entry in the namespace. Figure 127 shows the sequence of events that occurs.

Figure 127. Print Server Entries in Namespace

The following steps describe the sequence of events shown in the above figure:

1. The Client imports a partial binding to the Printer interface from the entry “A” in the Namespace.

2. The Client makes its first call with the binding it imported from “A.”

3. The Endpoint Mapper at Print Server A's host, when it receives the call from the Client, has no way of
knowing which of the four Print Servers it should map the call to, since all four servers have registered
their endpoints under the same interface. It therefore picks one at random to complete the binding.

The entry names are different, but the partial binding information contained in the entries is identical, since
the servers' host machine is the same. The interface UUID included in the call is no help, since that same

224 DCE Application Development Guide: Introduction and Style

interface is offered by all the servers. A client seeking a print server may not care to which server (and
thus to which printer) its request goes, but then again, it may care. If it does, there is a way it can specify
a server so that the endpoint mapper can select an appropriate endpoint to complete the partial binding.

Using Object UUIDs to Avoid Binding Ambiguity

Binding handles can contain, besides host address and endpoint information, an object UUID as well. The
endpoint mapper will try to match an object UUID contained in a binding handle with one of the object
UUIDs associated with its map of registered endpoints. This allows even a partial binding to specify a
target more precisely than just by host machine. Since object UUIDs are generated by the uuid_create()
function call (see the z/OS DCE Application Development Reference), servers can create as many of them
as they need.

For the print server example discussed in the previous section, the namespace entries for the servers
could be set up as shown in Figure 128.

Figure 128. Print Server Name Entries with Object UUIDs

The following steps describe the sequence of events shown in the preceding figure:

1. The Client imports a partial binding to the Printer interface from the entry “A” in the Namespace.

2. The Client makes its first call with the binding it imported from “A.”

3. This time the Endpoint Mapper at Print Server A's host is able to match the call with A's registered
endpoints, because the endpoints have been registered with both the Printer interface and Print Server
A's Object UUID, and the incoming call's partial binding also contains Print Server A's Object UUID.

 Chapter 7. Using the DCE Name Service 225

Each server has exported a set of partial bindings that differs from all other servers' by its object UUID
(which thus becomes, in effect, a server ID). If, for example, Server A has properly registered its
endpoints with the same object UUID as the one it exported its bindings with, the Endpoint Mapper will
make sure that a partial binding exported from Server A's name entry will result in a full binding to Server
A.

Now suppose that each print server sets up a separate namespace entry for each printer it manages. The
printers themselves would, in effect, be identified by their own object UUIDs. Figure 129 illustrates this.

Figure 129. Separate Printer Name Entries

Now a client will be able to access a specific printer by importing a binding handle from that printer's name
entry. The endpoint mapper at the target host would compare the object UUID in the partial binding with
the object UUIDs registered by the print servers, and select an appropriate server. The server in turn
would also use the object UUID to select the correct printer for the request, if it managed more than one
printer. A namespace set up in this way with a separate entry that contains a unique object UUID for
each accessible service resource is called an “object-oriented” namespace.

An Object-Oriented Namespace

“Object-specific entries” are namespace entries that each contain binding information only for one specific
object or resource, as demonstrated in the last printer service shown in the last previous figure. “Object”
can mean any of several things, depending on what kind of service the application's servers are offering.
Here are some examples.

226 DCE Application Development Guide: Introduction and Style

Thus, for a client that wants to have a file printed, it is natural to allow it to specify a printer as a
destination. Therefore, the client would bind to the print server through a name entry that specifies a
printer. To send something to a different printer, the client would import a binding from the name entry for
that other printer. The server may (or may not) be identical, but the object UUID in the binding handle
returned would uniquely specify the one printer represented by that entry.

On the other hand, consider an application that returns statistics about the processes currently active on a
group of machines. In this case it would be reasonable to regard the server as the object. In the
namespace entries for such an application, each entry would uniquely represent one server. A client
would import a binding from the name entry for the server it wanted to work with.

In other words, “object” is a handy way of saying “the thing that clients will want to access” in order to
accomplish the task set for the application. If the namespace is organized correctly, clients will be able to
import bindings from these objects' entries.

Setting Up an Object-Oriented Namespace

Once you have distinguished the objects your application uses, you must decide on an appropriate set of
names for the entries themselves. The entries can be created either by the application (server), if it has
the necessary privileges, or by a system administrator using the rpccp command interface.

After the entries have been created, each server must do the following:

1. Create an object UUID for each object managed by the server under an interface, insert it into the
binding handle(s) for that object, and export the handle(s) for each object to a separate entry in the
namespace.

Note that the object UUID should be generated and exported in general only once per created
namespace entry, and not each time the server starts up (see the example that follows of how to do
this). When a newly restarted server exports its partial bindings, nothing actually happens in the
namespace because the partial binding information remains the same (unless the server has moved to
a different machine). However, if the object UUIDs are regenerated, then the change in exported
information will force needless update activity in CDS, which is where the entries exist.

2. Register with the endpoint mapper the full bindings (including endpoints) obtained for the interface;
rpc_ep_register() performs this operation.

One way of avoiding unnecessary regeneration of object UUIDs would be to have a restarted server check
the namespace for the presence of its previously exported object UUIDs, as demonstrated in the following
code fragment. Refer to the z/OS DCE Application Development Reference for further information on the
function calls.

have_object = false;

/" Create an inquiry context for inspecting the object "/
/" UUIDs exported to "my_entry_name"... "/
rpc_ns_entry_object_inq_begin(my_entry_name_syntax, my_entry_name,
 &context, &st);

Table 8. Examples of Objects (Server Resources)

Service Object(s)

Printing A specific printer

Process Server A specific server

Queue Service The print queue,the kill queue, the backup queue

 Chapter 7. Using the DCE Name Service 227

/" If we successfully created context, look at "/
/" object UUIDs... "/
if (st == rpc_s_ok)
{

/" Try to get one object UUID from the entry... "/
rpc_ns_entry_object_inq_next(context, &obj, &st);

/" If an object UUID is there already, we don't "/
/" need to generate another one... "/
have_object = (st == rpc_s_ok)

/" Delete the inquiry context... "/
 rpc_ns_entry_object_inq_done(&context, &st);
}

/" If there were no object UUIDs in the entry, "/
/" generate one now... "/
if (! have_object)
{
 uuid_create(&obj, &st);

/" Put it in an object UUID vector... "/
objvec.count = 1;
objvec.id[@] = &uuid;

}

/" Export bindings. If an object UUID was generated, "/
/" export it too... "/
rpc_ns_binding_export(my_entry_name_syntax, my_entry_name,
 my_interface_spec, my_bindings,

have_object ? NULL : &objvec, &st);

Whenever you want to offer more than one instance of the same interface on the same host, you must
distinguish by object UUID the binding information in the name entries exported by the servers, if it is
important to distinguish among the servers when binding to them. Otherwise, the endpoint mapper's
selection of an endpoint with which to complete the binding from among all the servers on that host that
offer the appropriate interface will be random.

Figure 130 on page 229 illustrates what such an object-oriented namespace should look like.

228 DCE Application Development Guide: Introduction and Style

Figure 130. Object-Oriented Namespace Organization

Each entry has a name denoting the object represented, although the names are not shown in this figure.

Under this model, clients bind to servers via named objects in the namespace, each of which contains
enough specific information in its partial binding to allow the endpoint mapper at the destination host to
choose an appropriate endpoint for the incoming RPC.

By setting a namespace up this way, however, you do not necessarily restrict yourself to this one model
for accessing binding information. Through the use of two other types of entry, groups and profiles, which
can be superimposed on the simple object model, you can set up models where clients bind to
abstractions such as services, or directly to the servers themselves. These techniques are described in
the next section.

Nevertheless, at this point you have enough information to set up a namespace that consists of an entirely
“flat” expanse of separate resource entries. Bindings can be imported by clients by looking up specific
names. If the client has no specific name to look up, or if the lookup on the name(s) it has fails, it has no
alternative way of binding to a server.

Groups and Profiles

Name lookups can be made more flexible with two other types of entry: groups and profiles.

 Chapter 7. Using the DCE Name Service 229

 Group Entries

A group entry consists essentially of multiple independent other entries whose names are also associated
under the group name. These “other” entries can be simple (single-name) entries, or they may
themselves be group entries. Doing an import from the group entry will return the contents (the binding
handles) of its included entries (which are called “members”), but the selection is made by the DCE RPC
runtime, and from the client's point of view is undefined and implementation dependent.

In practice, the way this works with the usual binding import operations is as follows. Clients normally
import bindings by first calling rpc_ns_binding_import_begin() to set up an import context. Once this is
done, successive calls to rpc_ns_binding_import_next() will return binding handles from namespace
entries until the handles have all been returned or the client decides to stop; the client decides which
handle(s) to use based on its own criteria. When it is finished importing, it calls
rpc_ns_binding_import_done() to free the context.

The kind of entry the information is returned from is usually unknown to the client, which needs to know
only a name to look up and the interface UUID by which it wants to bind. If the name is that of a simple
server entry, then the bindings contained in that entry only will be returned. If the name is of a group
entry, then bindings will be returned from members (single entries) of the group, selected (by the RPC
runtime) in an undefined order. If one or more members of the group are themselves groups, then the
same thing happens recursively whenever these lower-level groups are accessed.

Note that the group entry and its members are separate things. The group entry can be deleted, but its
former members will continue to exist as independent entries, unless they too are explicitly deleted. Thus,
you can implement a namespace organization where the same bindings can be imported through
individual simple entries or through group entries, depending on how the client is coded.

 Profiles

A profile entry specifies a search path or hierarchy of search paths to be followed through the namespace
in order to obtain a binding to a server that offers a specified interface.

When a client imports from an entry that happens to be a profile, successive imports (accomplished by
calling rpc_ns_binding_import_next()) return the contents of entries that are read as a result of following
the specified path through the namespace. All this is transparent to the client, which sees only the
bindings returned. Profiles can be used to set up default paths and groups of paths for users. The
RPC_DEFAULT_ENTRY_NAME environment variable, which is the default entry name used by the name
service in import operations, usually contains the name of a profile.

As with groups, the entries contained in profiles, which are called “elements,” exist independently of the
profile entry itself.

A very important property of profiles is that they allow clients to know little or nothing about the
organization of the namespace itself. Using the default case as an example, consider the following: if the
profile at RPC_DEFAULT_ENTRY_NAME has been set up with elements containing entries for all
possible active servers for a particular application, then clients can simply import from this name and trust
the profile mechanism to walk through the various compatible possibilities and return binding handles via
successive calls to rpc_ns_binding_import_next(). (Note that a profile entry is not limited to containing
entries for just one interface; thus, RPC_DEFAULT_ENTRY_NAME could be set up to contain all the
defaults for a cell.)

230 DCE Application Development Guide: Introduction and Style

Summary of Namespace Entry Types

Clients access binding information in the namespace by looking up (by name) one of three different kinds
of entry:

� A server entry

� A group entry, which contains other entries whose contents are returned to the caller when it reads the
group entry

� A profile entry, which specifies a path of entries to be searched whose contents are returned to the
caller when it reads the profile entry

Lookups behave differently depending on the kind of entry read. If an entry is a simple server entry, then
the search begins and ends right there, whether successful or not. If the entry is a group, then the lookup
is more complicated. A binding will be returned from among those that are found to be compatible by the
name service, but within that category the selection is undefined. If the entry is a profile, then a specified
path of entries is searched. The entries in this path may themselves be other profiles, or groups, or
simple entries. The search continues until either a compatible binding is found, or the entire path has
been unsuccessfully traversed.

Three Models for Accessing Binding Information

By adding groups and profiles to the object-specific namespace organization originally described, you can
implement any or all of the following three basic models for accessing binding information:

� Clients bind to services

� Clients bind to servers

� Clients bind to resources or objects

Each of the three models is described in the following sections.

Access by Services

Servers have separate namespace entries; each server distinguishes the bindings it exports with its own
identifier; that is, an object UUID that it generates for itself the first time it starts up. These separate
server entries are also members of group namespace entries, which represent services. The criterion for
membership in a service group is that all the servers in it export the interface that identifies that service.
(They may happen to export other interfaces as well.)

Clients, in effect, bind to services by importing their binding handles from the group entries. Note,
however, that the server-specific entries still exist independently and are accessible to lookup.

This model is appropriate for applications where clients do not care which server they happen to bind to or
where that server is located as long as it offers the desired service. The eligible servers are pooled into a
group entry from which bindings to one of them are selected in an undefined order and returned whenever
a client performs an import operation from the group entry.

 Chapter 7. Using the DCE Name Service 231

Access By Servers

In this model, distinct servers have separate and distinct name entries, and clients import bindings directly
from the server entries. Hence, an application using this kind of binding model will “own” just as many
simple entries in the namespace as there are active servers.

Since the client in this model is looking for a specific server, imports will be done directly from the server
entries. The only exception to this rule would be where two or more instances of a server were active on
the same host, and it was indifferent to the client as to which one it is bound to. The entries for the
multiple same-host servers then could be put into a group entry, and binding imports done from the group.

Access By Objects

Servers operate on or manage multiple objects. Clients use these objects (via the servers) as resources.
For each such resource, the server creates a separate namespace entry and exports its binding
information there, distinguishing each object entry with its (the object's) own object UUID.

An example of this model is the printer service that was previously described. Clients will import directly
from the name entry of the resource they want to use. For this kind of application, there will generally be
more namespace entries than active servers, since each server presumably manages more than one
object. If the name entries have been set up correctly and the servers have properly registered the object
UUIDs they created, there will be no difficulty in routing any partial binding to the correct server (namely,
the server that manages the object or resource specified).

Summary of Binding Models

Although the name service allows other approaches, we recommend that whenever possible you use the
object-oriented scheme to organize your namespace entries. There are at least two good reasons for
doing so. First, it is easy to administer; at the simple entry level, things really are simple. Second, this is
the most flexible foundation for building other more complicated access models using group entries and
profiles.

The separate name entries in your namespace should contain bindings that will unambiguously resolve to
specific server instances. Since interface UUIDs are often offered by more than one server, more
information than just an interface UUID is needed in order to give an RPC with a partial binding the
required specificity. Object UUIDs provide this extra information. When using object UUIDs to distinguish
bindings in this way, servers must take care to preserve their uniqueness across name entries.

Finally, profile entries allow clients to walk through a specified search path of namespace entries and yet
be completely ignorant of the actual names themselves. While name independence may not be desirable
for an object-based or resource-based distributed application, it can be a powerful mechanism when used
with other models.

As you are setting up the namespace organization for your application, remember that there is not a direct
exact mapping from names to bound servers. Different names, once imported, may resolve to identical
bindings if the partial bindings were exported on the same interface, from the same host, and not
otherwise distinguished from each other by object UUIDs. It is the application developer's responsibility to
tailor an application's export and import procedures so that this mapping behaves as intended.

232 DCE Application Development Guide: Introduction and Style

Models Based on Non-CDS Databases

The three models previously described are not mutually exclusive; if the namespace is set up correctly, all
three can coexist at the same time. All three of the models are implemented through the functionality of
the DCE RPC name service.

Although the emphasis in this discussion has been placed on the storage and retrieval of binding
information, the namespace entries can be used to store additional states for objects. In order to do this,
an application would have to create additional attributes on the CDS entries it intended to use because the
name service recognizes only the four NSI attributes: binding, object, group, and profile.

Such additional entry attributes would be created and accessed through XDS. However, whenever you
find yourself contemplating extending the name service in this manner, you should carefully consider
whether the name service (and, consequently, CDS) is the best mechanism for doing what you want to do.

In the preceding example, where an object-oriented namespace containing separate entries for individual
printers was described, only the identifier for the printer (the object UUID) and the binding for the server
that managed it were stored in the CDS entry. Other information, such as what jobs are currently queued
for the printer, who owns the jobs, and so on, was maintained by the server. This data could be stored in
CDS only by creating new attributes to put it in, but it would be changing too quickly for CDS to efficiently
keep up with it anyway. The performance of both the application and CDS would suffer from such an
arrangement.

It is possible to imagine distributed applications whose resources (the objects they are managing) are of
such a nature that they could be more efficiently managed through a private application-implemented
database. Suppose the number of managed objects is very large, or that the state of the objects is
volatile. It would certainly be a bad idea to try to use CDS to store this kind of information, which would
be changing much more rapidly than CDS's ability to propagate the updates.

Example of a Privately Managed Database

As an example of such a privately managed database, consider a print service where jobs are submitted
not to individual printers, but rather to a generic printer service. The client, lpr, binds (probably through a
group entry) to some certain print server, and sends the job to be printed to that server, which then, after
some thought, sends the job to one of the printers that it manages.

Consider, for example, what happens if a user invokes the client cancel sometime later to stop a job. If,
for example, the original command was

lpr War_and_Peace.ps

and the subsequent request to cancel is

cancel War_and_Peace.ps

then how does the server that cancel binds to find the right job to delete? There is no guarantee that
cancel will bind to the same server that happened to receive the original print request, so having each
print server keep track of its own jobs would not be the answer.

One way to keep track of jobs queued would be to have a dedicated “job location server” as part of the
application. Each time a print server queued a job to a printer it would record the fact (with all the
pertinent details) with the location server. Whenever a job completed, the server would again notify the
location server to remove its record of that job from its database. A client cancel then binds first to the
location service, where it receives the name of the print server associated with the job it wants to cancel.

 Chapter 7. Using the DCE Name Service 233

It then looks up that name, binds to the right print server, and sends the cancel request. In effect, the
location server has become a name service for cancel.

This method of organizing activity results in a split-model database. The print servers' binding information
is managed through CDS, as usual, and the location server manages other more volatile information
associated with those same servers.

Another way a server could maintain its own database of named objects would be by implementing a
junction.

 Combining Models

In designing a binding access model for an application, consider also whether it may be appropriate to
combine some of the models previously discussed. In the print service application, it may be desirable for
servers to also offer a management interface to specific servers rather than to specific objects; for
example, lpr, lpq, and lprm are generic application clients, so it is appropriate for them to bind to printer
objects, but if lpr_mgmt is supposed to manage characteristics of a whole service, then it should bind to
servers.

An Object-Oriented Model with Grouped Binding Information

The following variation on the object-oriented binding model shows how the group attribute can be used in
object entries. In this model, each of the object entries contains, as before, an object UUID that will
uniquely identify (either to the endpoint mapper on the exporting server's machine, and/or to the server
itself) the object referred to by that entry. However, the object entries do not contain any binding
information. Instead, a group attribute in each object entry refers clients' import operations back to the
server's own separate entry, which contains the binding information for that server.

The namespace ingredients of this model are the following:

� A single namespace entry for the server, which contains a binding attribute and, possibly, an object
attribute. Thus, this entry contains all the binding information that is exported to the namespace by
the server.

� One namespace entry for each object that the server offers. Each entry contains an object attribute
that contains that object's UUID, and a group attribute that refers back to the exporting server's
namespace entry.

Note that the object entries consist of a combination of attributes not encountered before (object and
group). Although unorthodox combinations of attributes are not generally recommended, they can
sometimes be useful, as in this example.

The advantages of this scheme are two-fold:

� It greatly reduces the amount of server-provoked export activity into the namespace.

� It allows the server application to associate a people-readable name (that is, the name of each
object's namespace entry) with a UUID.

When the server is first activated it creates all the namespace entries, exports the objects' UUIDs into the
object entries, and initializes the group attributes to refer to the server entry. It exports its binding
information into the server entry only. From then on, whenever it is restarted, all the server needs to do is
re-export its binding information into the single server entry. Everything else remains the same; that is,
the objects' UUIDs have not changed, nor has the name of the server entry to which the object entries'

234 DCE Application Development Guide: Introduction and Style

group attributes refer. Thus, instead of exporting bindings to every one of its object entries on subsequent
startups, the server exports to only one entry.

Of course, if the system were restarted or the namespace reinitialized, then the original start-up process
would have to be repeated.

The slight disadvantage of this scheme occurs on the client side, where the import process becomes
somewhat more complicated than it would be if all necessary information (both binding and object UUID)
could be read in from the same entry.

Server and Client Steps

The following subsections describe in detail, from both the server's and the client's side, how this model
works.

 Server Export

This section lists the steps that the server must perform to set up and initialize its namespace. Each step
consists of the NSI function that must be called to perform the operation.

1. uuid_create()

To create an object UUID for each object that the server intends to export.

2. rpc_server_register_if()

To register interface(s) and EPVs with the RPC runtime. (This is also where manager types, if
any, are registered.)

3. rpc_server_use_all_protseqs()

To request bindings from the RPC runtime for each object.

4. rpc_server_inq_bindings()

To get the binding handles for each object.

5. rpc_ns_binding_export()

To export the binding information of the objects' common server and the object UUIDs for each of
the namespace objects to the server's own separate name entry. This step is performed only once
for each collection of objects managed by the same server.

The final three steps set up the grouped collection of service objects. Note that the next two steps are
executed once for each object managed by the server:

6. rpc_ns_binding_export()

To export each object's object UUID to its own name entry. A NULL is passed as the binding_vec
parameter to specify that only an object UUID, and no bindings are being exported.

Note that each object UUID must be exported to both the object name entry and the server entry;
hence the need for this export operation in addition to the operation described in Step 5 above.

7. rpc_ns_group_mbr_add()

To add the server's name entry (created in the first step) as the sole member of an NSI group
attribute in each of the separate objects' name entries created in the second step.

 Chapter 7. Using the DCE Name Service 235

8. rpc_ep_register()

To register each object's UUID with the server's host machine's endpoint mapper. Note that
rpc_ep_register() takes an object UUID vector as an argument, and generates from this all the
necessary relationships between UUIDs and bindings; thus the call is made only once.

The point of this step is to make sure that when presented with an object UUID in an incoming
RPC, the endpoint mapper can look that UUID up in its database and find an endpoint that has
been registered with it. Registering the server's bindings (that is, endpoints) with all object UUIDs
will accomplish this.

Step 6 is made necessary by the way the ACL editor's binding mechanism works. (Applications gain
access to the ACLs that an application maintains on its objects through the client agent acl_edit, which
uses a standard DCE-wide interface for ACL operations.) The acl_edit mechanism contains code that
allows it to bind to the server that implements the ACL manager responsible for the object whose ACL is
desired. However, these generalized binding routines conform to certain fixed ways of doing things. If the
acl_edit binding mechanism obtains an exported object's object UUID from the object entry, it will use that
object UUID in its subsequent import through the group attribute.

Thus, the object UUID will be contained in the handle structure that the client presents to the
rpc_ns_binding_import_next() call, expecting it to be filled in with binding information. However, the
RPC runtime always tries to match such an input object UUID with a UUID contained in the entry that the
caller is trying to import from. If no matching object UUID is found, no binding information will be returned.
Thus, all the single object UUIDs separately exported to the object entries must be exported to the server
entry as well, if the exported objects are to have ACLs accessible through the acl_edit mechanism.

Figure 131 illustrates the resulting namespace arrangement.

Figure 131. The Export Operation in a Model with Grouped Bindings

This generic server manages four objects, called simply “A,” “B,” “C,” and “D.” One entry is created for
each of these objects, and a separate entry is created for the server itself, where the binding information is
held.

The result of all this is that there is now one more namespace entry for a given service instance than
there would have been with the object-oriented model discussed earlier. The group attribute in each entry
is a level of indirection that allows the server to dispense with exporting many copies of the same thing.

236 DCE Application Development Guide: Introduction and Style

If a directory with the proper permissions has been set up for it in the namespace by the system
administrator, a server should be able to create the object entries simply by making the calls described
here.

 Client Import

To bind to an object managed by the server as previously described, a client performs the following series
of library calls:

 1. rpc_ns_entry_object_inq_begin()

To set up an object inquiry context; the client application here specifies the name of the desired
namespace object entry.

 2. rpc_ns_entry_object_inq_next()

To return the object UUID that the server exported to the object's entry.

This UUID (which will be passed to the rpc_ns_binding_import_begin() routine, below) will enable
the server host's endpoint mapper to accurately map the incoming remote procedure call to the server
that exported this entry.

The UUID may also be used by the server itself to determine which object the client wants to access.
Note that although this set of library routines is designed to accommodate schemes in which multiple
object UUIDs have been exported to the same entry, the model described here requires that only one
object UUID (the unique identifier of the object to bind to) be exported.

 3. rpc_ns_entry_object_inq_done()

To delete the object inquiry context.

 4. rpc_ns_binding_import_begin()

To set up a binding import context.

Note that the object UUID that was returned by the call to rpc_ns_entry_object_inq_next() must be
passed to rpc_ns_binding_import_begin(); as a result of this the import operation
(rpc_ns_binding_import_next()) will return only a binding with that object UUID.

An alternative to using the binding import routines would be to use the group member inquiry
(rpc_ns_group_mbr_inq_...()) routines to learn the name of the entry referred to in the group
attribute, and then to do a direct import from that entry.

The reason for using the rpc_ns_group_mbr_inq_...() routines, rather than the normal import
functions (rpc_ns_binding_...()), would be to make sure that the group (and not some other) attribute
in the entry is read. The rpc_ns_binding_import_next() routine is defined to successively exhaust
the contents of an entry's

 � binding attribute

 � group attribute

 � profile attribute

Since the model described here employs object entries with only group attributes and no binding or
profile attributes, using the normal import routine should work fine.

 5. rpc_ns_binding_import_next()

To read the entry's group attribute.

The name service's access to (and return of the binding handle from) the entry's group attribute is
transparent and unerring because there is only one set of binding information associated with a given
entry in this scheme, and that information is found only in the group attribute. Note that if there had
been more than one member in the group, which in fact is generally the case when group attributes

 Chapter 7. Using the DCE Name Service 237

are used, then the order of return would be random. Or if there had been binding information
associated with both attributes, then here also the order in which binding handles would be returned
would be random; that is, the caller might get a handle from the simple name attribute first, and then
the handles exported to the group members, or it might get one or more of the group's member's
handles, then one or more of the simple entry's handles, and so on.

 6. rpc_ns_binding_import_done()

To delete the binding import context.

Figure 132 illustrates this activity.

Figure 132. Importing from a Model That Uses Grouped Bindings

The client shown in the figure imports a binding for object “A.” This becomes (through the group attribute)
a referral back to the server's entry where the bindings are held, and a binding is indirectly imported from
the server entry. The object UUID for “A” is read, in a separate operation, directly from the object's entry.
With this information in its binding handle, the client makes its first remote call through the server's
interface. The call finds its way to the endpoint mapper via the partial binding information, and the
endpoint mapper completes the binding by looking up the object UUID, which was registered there by the
server.

Global Organization of the Namespace

Since DCE is designed to support very large namespaces, it uses a hierarchical service for binding. The
global scale is separated into cells whose boundaries are administratively defined. For example, a
company using DCE might have a cell containing its employees and local services. The cell namespace
administrator could decide to put all the service entries in a single directory if the cell were small.

Both the import and export name service operations support default values derived from environment
variables; for example, RPC_DEFAULT_ENTRY_NAME. The environment variables can be set by
start-up files to the name of a well-known directory within the cell. The only remaining decision then will
be how to name the actual entries within the directory. One easy method is to use mnemonic names, or
names of interfaces such as binop, spm_library, and so on. If these entries are only being accessed by
clients through profiles, their names will not be directly visible to the client anyway.

But now imagine a larger organization. The administrator will want to define some naming hierarchy
based on geography, organization, or other criteria. Somewhere within this hierarchy some writable

238 DCE Application Development Guide: Introduction and Style

directories (or parent directories) would be created, which could contain server entries, profiles, and so on.
If clients are using only profiles to access bindings, then this organization will still be transparent to them.
If clients want to bind to specific servers or objects, then more attention must be paid to the names given
the servers' or objects' entries. The names should in some way reflect the organization, geography, or
other relevant aspects of the server or object.

In summary, the important points to keep in mind are the following:

� The model should be appropriate for the organization and permit efficient administration of the
namespace.

� There should be simple guidelines for naming objects and services so that users have a good chance
of guessing the right answer.

 Chapter 7. Using the DCE Name Service 239

240 DCE Application Development Guide: Introduction and Style

 Chapter 8. RPC Parameters

The RPC mechanism attempts to provide a data model as close as possible to the familiar local call
model. For example, you can pass data “by reference” — by passing a pointer to a data item — despite
the fact that client and server do not share an address space. Nevertheless, there are significant
differences in both the syntax and semantics of RPC parameter data compared with C language local call
data. For example, RPC provides directional attributes, conformant arrays, discriminated unions, and
pipes, constructs which have no equivalents in C. Each requires an IDL specific syntax and has new
semantics. Also, familiar constructs, such as pointers, closely mimic their local C language counterparts,
but nevertheless must behave differently in some circumstances.

The DCE RPC programmer is thus confronted with a number of unfamiliar style and policy issues. The
policy issues have mainly to do with which data types to use in given circumstances: for example, would
you be better off using an array or a pipe to transfer a large block of data? This chapter contains
recommendations that should help you make such choices. The style issues arise from the rich and
unfamiliar syntax for RPC parameters which can make the mechanics of using many of the RPC data
types seem rather daunting. This chapter contains numerous examples of basic data passing styles.

 Execution Semantics

Before we begin to discuss the RPC data types themselves, a slight digression is necessary. Whatever
data you pass, all RPCs must deal with the unreliable nature of remote network connections. A call may
not complete due to a network failure, possibly leaving the call operations in an indeterminate state. For
this reason, the IDL provides execution semantics attributes that applications can use to request certain
(limited) guarantees about call completeness.

Ideally, in order for an application to behave in a determinant fashion, each operation needs to be invoked
exactly once each time it is invoked. This requirement can be relaxed somewhat for idempotent
operations: those which have the same effect when they are invoked one or more times. In this case, an
application can settle for at-least-once semantics.

Unfortunately, with a remote procedure call, there is no way to guarantee either exactly once or
at-least-once call semantics. Instead, RPC provides at-most-once and idempotent semantics. When a
call completes and returns to the client, then at-most-once semantics is equivalent to exactly-once
semantics, and idempotent semantics is equivalent to at-least-once. When a call fails to return to the
client—either because of a server or communications failure—then the semantics make the following
guarantees:

at-most-once The call was invoked on the server either 0 or 1 times. If the call was invoked, it may or
may not have completed execution.

idempotent The call was invoked on the server 0 or more times. If the call was invoked, it may or
may not have completed execution for any invocation.

In reality, idempotent semantics provides no guarantee for calls that fail to return to the client. In fact,
DCE provides no guarantee about how idempotent semantics are actually implemented. It is perfectly
correct to implement idempotency by using at-most-once semantics, and depending on protocol and
implementation, this may be the case. Idempotent semantics is therefore really a hint from the application
that a call is a candidate to be retried if the implementation uses a retry strategy.

These characteristics lead to two kinds of policy guidelines for call semantics. The first has to do with the
behavior required of idempotent operations. An operation is a good candidate for idempotent semantics if
it either changes no state on the server (for example, a read operation), or if the server state will be the

 Copyright IBM Corp. 1994, 2001 241

same even if the same call is invoked more than once (for example, a call that writes the same record)
with the same [in] data. Note that in either of these cases, the result returned by a call may not be the
same on each retry, since some other thread or process may have modified server state. A server that
allows simultaneous reads and writes provides a good example. However, the runtime does guarantee
commutativity of operations on the same association: an idempotent call will not be retried if a later call
on the same association has been invoked.

The second policy issue has to do with how applications respond to call failures. The issues are the same
for idempotent and at-most-once calls. In neither case can the client know whether the server manager
operation was invoked, and, if it was invoked, whether it was completed. This leads to three possible
failure states:

1. The manager operation was not invoked.

2. The manager operation was invoked but did not complete.

3. The manager operation was invoked and completed, but failed to return to the client.

The burden of determining which state applies, and implementing recovery actions rests almost entirely
with the application. The RPC mechanism provides limited support for cleanup in the case of applications
that use context handles to maintain state between calls. Application provided context rundown routines
will be called on behalf of the application if a communications failure is detected. Beyond this rather
elementary mechanism, DCE RPC does not provide any internal support for transaction processing,
roll-back, or other recovery mechanisms. For applications where error recovery and maintenance of
consistent state is essential, these must be implemented by the application programmer. The topic is
beyond the realm of this policy guide.

IDL also provides two execution semantic attributes of somewhat more limited use: broadcast and
maybe. Broadcast semantics may be used with connectionless transports when there are multiple servers
on the local network that can handle a call. The client broadcasts the call request to all servers, and
completes the call with one of them. Maybe semantics provides a calling style that may be used when a
call has no [out] or [in, out] parameters. The call is attempted once, and no response is returned. Both
broadcast and maybe semantics implicitly require that the operation be idempotent.

 Parameter Semantics

RPC calls and the RPC API specify directional attributes for their parameters, even though such attributes
are not formally supported by C. As a general rule, an [in] parameter is one that must be passed with a
meaningful value and an [out] parameter is one whose value will be changed by the call. An [in,out]
parameter is therefore one which must have a meaningful value on input and which may be changed on
output.

The following table summarizes parameter semantics:

An [out] or [in,out] parameter is one whose value is changed by the call, so it must be passed by
reference, that is, as a pointer to the datum of interest. RPCs and the RPC APIs therefore always specify

Table 9. RPC API Parameter Semantics

Semantics Meaningful Value Input Changed on Output

[in] yes no

[out] no yes

[in,out] yes yes

242 DCE Application Development Guide: Introduction and Style

output parameters as pointers. The address passed must always point to valid storage. For example, the
ubiquitous status parameter may be declared in the IDL as

[out] error_status_t "status

The application code then needs to declare a variable such as

 error_status_t st;

and pass it as &st to each RPC.

When a call allocates storage for an output parameter, it is declared as a pointer to a pointer. For
example,

 rpc_binding_vector_t ""binding_vector

The application follows the same rule as in the status case, declaring a variable such as

 rpc_binding_vector_t "binding_vec

and then passing this as &binding_vec. This obeys all the rules for output parameters: the address
passed to the call points to valid storage, but the contents of that storage need not contain a meaningful
value (in this case, need not be a valid pointer). A simple rule of thumb for output parameters is to
declare a variable with one less asterisk than contained in the IDL (or RPC API) declaration and pass its
address when calling the operation.

Parameter Memory Management

RPC attempts to extend local procedure call parameter memory management semantics to a situation in
which the calling and called procedure no longer share the same memory space. In effect, parameter
memory has to be allocated twice, once on the client side, once on the server side. Stubs do as much of
the extra allocation work as possible so that the complexities of parameter allocation are transparent to
applications. In some cases, however, applications may have to manage parameter memory in a way that
differs from the usual local procedure call semantics.

For the purposes of memory allocation, three classes of parameters must to be considered:

 � Nonpointer types

 � Reference pointers

 � Full pointers

For all types, the client application supplies parameters to the client stub, which marshalls them for
transmission to the server. The client application is entirely responsible for managing the memory
occupied by the passed parameters. On the server side, the server stub allocates and frees all memory
required for the received parameters themselves.

In the case of the pointer types, however, the application and stubs must manage memory not only for the
parameters themselves, but also for the pointed-to nodes. In this case, the memory management
requirements depend both on the pointer type and on the parameter's directional attributes.

The rules are as follows:

 Chapter 8. RPC Parameters 243

Client Side Allocation

in parameters For all pointer types, the client application must allocate memory for the pointed-to
nodes.

out parameters For reference pointers, the client application must allocate memory for the
pointed-to nodes, unless the pointer is part of a data structure created by server
manager code. For parameters containing full pointers, the stub allocates memory
for the pointed-to nodes.

in,out parameters For reference pointers, the client application must allocate memory for the
pointed-to nodes. For full pointers, on making the call, the client application must
allocate memory for the pointed-to node. On return, the stub keeps track of
whether each parameter is the original full pointer passed by the client, or a new
pointer allocated by the server. If a pointer is unchanged, the returned data
overwrites the existing pointed-to node. If a pointer is new, the stub allocates
memory for the pointed-to node. When a parameter contains pointers, such as an
element in a linked list, the stub keeps track of the chain of references, allocating
nodes as necessary.

It is the client application's responsibility to free any memory allocated by the stub
for new nodes. Clients can call the routine rpc_sm_client_free() for this purpose.

If the server deletes or eliminates a reference to a pointed to node, an “orphaned”
node may be created on the client side. It is the client application's responsibility
to keep track of memory that it has allocated for pointed-to nodes and to deal with
any nodes for which the server no longer has references.

Server Side Allocation

in parameters For all pointer types, the stub manages all memory for pointed-to nodes.

out parameters For reference pointers, the stub allocates memory for the pointed-to nodes as long
as the size of the targets can be determined at compile time. When the manager
routine is entered, such reference pointers point to valid storage. For parameters
that contain full pointers, the server manager code must allocate memory for
pointed-to nodes. Servers can call the routine rpc_sm_allocate() for this purpose.

in,out parameters For reference pointers, the stub allocates memory for pointed-to nodes if either the
size of the pointed to nodes can be determined at compile time or the reference
pointers point to values received from the client. When the manager routine is
entered, such reference pointers point to valid storage. For full pointers, the stub
allocates memory for the original pointed-to nodes. The server manager code
must allocate memory if it creates new references. Servers can call the routine
rpc_sm_allocate() for this purpose.

The server stub automatically frees all memory allocated with rpc_sm_allocate().

RPC Data Types

IDL provides both a number of primitive data types — such as various sizes of integers and floats, bytes,
and Booleans — as well as pointers and a variety of constructed types based on the primitive types. The
use of the primitive types is quite straightforward. The only important policy issues have to do with IDL
data type to C data type mappings and with character handling. Pointers and the constructed types raise
many more policy and style issues, and the bulk of this chapter is devoted to describing them.

244 DCE Application Development Guide: Introduction and Style

IDL to C Type Mappings

Many of the primitive C data types represent items of different sizes on different machines. For example,
an int may be 16 bits on one machine and 32 bits on another. These ambiguities can cause portability
problems for some C programs, and they are intolerable for RPC programs. A parameter to an RPC call
must represent the same size data item on both the client and server machine, whatever the machine
architectures.

This means that when IDL declarations are compiled to generate C language headers and stubs, a given
IDL type must always be declared in the corresponding C code as a C type of a specific length, no matter
what machine the IDL compilation is done on. To achieve this:

1. Each IDL primitive type is always represented in the generated C files, by a specific defined C type

2. Each of the specific defined C types is defined by the local implementation of DCE so that it
represents a data type of the correct length.

For example, a parameter declared in the IDL as a short, will be declared in the IDL generated header file
as the defined type idl_short_int. Each implementation of DCE then defines the idl_shor_int type
correctly for the local C compiler and machine architecture to be an integer 16 bits long. For example, on
a 32-bit machine, the idl_short_int type is typically defined as a short int.

When you write application code that refers to a parameter declared in the IDL, you must use a type that
declares a data item of the same length. The safest policy is to use the same specific defined C type
used in the headers and stubs. For example, if your IDL file declares:

void my_op([in,out] short var);

Then your server manager code would contain a function that looks something like this:

void my_op(idl_short_int var)
 {
 .
 .
 .
 }

On a 32-bit machine, your code could probably use a short safely (because that is how your
implementation probably defines idl_short_int, but such usage is not portable to other machine types and
is therefore not recommended).

For numeric data, outgoing data is sent as is on the wire on the DCE network, and it is the receiver who
converts the incoming data to the local representation (receiver-makes-right). This conversion is done
automatically by DCE RPC using the Network Data Representation Protocol (NDR), which defines how
the structured values supplied in an RPC call are encoded into byte stream format for transmission over
the wire.

The following table shows the IDL to NDR to C type mappings for the IDL primitive types.

Table 10 (Page 1 of 3). IDL/NDR/C Type Mappings

IDL Type NDR Type Defined C Type C Type

boolean boolean idl_boolean unsigned char

char character idl_char unsigned char

byte uninterpreted octet idl_byte unsigned char

small small idl_small_int char

short short idl_short_int short int

 Chapter 8. RPC Parameters 245

Table 10 (Page 2 of 3). IDL/NDR/C Type Mappings

IDL Type NDR Type Defined C Type C Type

long long idl_long_int long int

hyper hyper idl_hyper_int 16- or 32- Bit Machines:
Big Endian: struct {
 long high;

unsigned long low;
 }

Little Endian: struct {
unsigned long low;

 long high;
 }

64-Bit Machines: long

unsigned small unsigned small idl_usmall_int unsigned char

unsigned short unsigned short idl_ushort_int unsigned short int

unsigned long unsigned long idl_ulong_int unsigned long int

unsigned hyper unsigned hyper idl_uhyper_int 16- or 32-Bit Machines: Big
Endian: struct {

unsigned long high;
unsigned long low;

 }

Little Endian: struct {
unsigned long low;
unsigned long high;

 }

64-Bit Machines: unsigned
long

float float1 idl_float float

double double idl_double double

handle_t not transmitted handle_t void *

error_status_t unsigned long idl_ulong_int unsigned long int

ISO_LATIN_1 uninterpreted octet ISO_LATIN_1 byte

ISO_MULTI_LINGUAL (Note 1.) ISO_MULTI_LINGUAL struct{
 byte row;

byte column; }

246 DCE Application Development Guide: Introduction and Style

In addition to the IDL primitive type mappings defined in the table, implementations provide a set of
convenient typedefs that map the listed defined types into types that explicitly name amounts of storage.
These are defined in IDL as:

typedef unsigned small unsigned8; /" positive 8-bit integer "/
typedef unsigned short unsigned16; /" positive 16-bit integer "/
typedef unsigned long unsigned32; /" positive 32-bit integer "/
typedef small signed8; /" signed 8-bit integer "/
typedef short signed16; /" signed 16-bit integer "/
typedef long signed32; /" signed 32-bit integer "/
typedef unsigned32 boolean32; /" a 32-bit boolean "/

They are defined in C as:

typedef idl_usmall_int unsigned8;
typedef idl_ushort_int unsigned16;
typedef idl_ulong_int unsigned32;
typedef idl_small_int signed8;
typedef idl_short_int signed16;
typedef idl_long_int signed32;
typedef unsigned32 boolean32;

As a matter of programming style, these types have the advantage that the size of the declared data items
is explicitly stated. For this reason their use in both IDL declarations and application C code is
recommended. Note also that the IDL typedef

typedef unsigned long error_status_t;

and the C typedef

typedef idl_ulong_int error_status_t;

are also made available by implementations a convenient portable declaration for status parameters.

Table 10 (Page 3 of 3). IDL/NDR/C Type Mappings

IDL Type NDR Type Defined C Type C Type

ISO_UCS ISO_UCS struct{
 byte group;
 byte plane;
 byte row;

byte column; }

Note:

1. Floating Point Data: z/OS DCE always converts floating point data received from the network to IBM long and
short format for the local z/OS system.

 2. Integer Data:

NDR represents signed integers in two’s complement notation, and unsigned integers as unsigned binary
numbers. The byte sequence of integer data is represented in two ways:

big-endian format Consecutive bytes of the byte stream representation are ordered from the most significant
byte to the least significant byte.

little-endian format Consecutive bytes of the byte stream representation are ordered from the least significant
byte to the most significant byte.

If the ordering of bytes is different between machines, DCE RPC automatically converts the data at the receiver’s
end to the local system representation.

 Chapter 8. RPC Parameters 247

Character Data Handling

When passed as an RPC parameter, the IDL char type is automatically subject to ASCII-EBCDIC
conversion, depending on the character encodings used by the client and server machines. Therefore, the
contents of a char type may not be the same for the sender and receiver. This allows clients and servers
to maintain the same semantics when passing characters between machines that use different encodings.
For example, the character ‘a’ is represented by a byte with the value 61h on an ASCII machine, and a
byte with the value 81h on an EBCDIC machine. RPC automatically makes the conversion so that a
character parameter that prints as ‘a’ on the client machine also prints as ‘a’ when received by the server.

However, if what your application really intends is to pass a byte with the value 61h from client to server,
such translation is clearly not what you want. When exchanging character data on-the-wire, you must
ensure that any data you declare as char is true character data and does not imbed complex attributes,
binary data or structures. To avoid any potential problem, when passing byte data with noncharacter
semantics, use the IDL byte type.

In addition, ensure that if you explicitly use the unsigned keyword when specifying the char data type in
an IDL definition, you must also use it within the client, server, and manager code.

Also note that IDL provides three international character types for use with non-ASCII, non-EBCDIC
character sets: ISO_LATIN_1, ISO_MULTI_LINGUAL, and ISO_UCS. To ensure portability, your
application should use these types to declare character data in one of these sets.

DBCS Character Data: Your DCE applications may need to exchange Double-Byte Character Set
(DBCS) data between the client and server. For example, your application may need to exchange data
using an international character set such as Kanji. To handle double-byte character data, such as Kanji,
use the byte attribute in the IDL file to declare the data type. This will prevent any data format conversion
by the DCE RPC mechanism.

 Pointers

RPC pointers differ from local pointers in one key respect: there is no shared address space between
client and server. This means that the stubs need to marshall the pointed-to data itself. To do so, the
stubs must be able to dereference any pointer passed as a parameter. This means that a pointer, even if
it does not point at useful data, must be initialized either to NULL or to a valid address before it is passed
as a parameter. This behavior may be counter-intuitive for programmers used to local procedure calls,
where pointers may be freely passed whether they have been initialized or not, and is a common source
of programming grief for remote procedure calls.

To be able to marshall pointer referents, the stubs need to know, either at compile time or at run time,
how much data to transmit; that is, they need to know the size of the pointed to object. This can require a
good deal of work on the part of the stubs in the case of varying or conformant arrays and objects like
linked lists.

One effect of this is that pointers only reference the marshalled data itself; that is, data of the size
determined by the stub. For example, passing an idl_char * parameter causes the stub to marshall a
single idl_char, since that is the size of the object pointed to by an idl_char *. Typically, a local
procedure call passes a char * type in order to pass the address of an array of characters, not a single
char; but a remote routine that tries to move such a pointer beyond the transmitted char will very likely
find itself pointing to invalid storage and certainly not to the intended string.

A similar case is illustrated in the sample code: a client passes an array and an [in,out, ptr] pointer to an
array element. If the server sets the pointer to point to some element of the passed array, then it will point
to memory holding a copy of that element when the call returns to the client. It will not point to any part of

248 DCE Application Development Guide: Introduction and Style

the passed-in array itself, and any attempt to increment or decrement the pointer on the client side will
leave it pointing to an invalid location.

This is one example of the fact that you cannot assume that the results of pointer arithmetic will be the
same for a local and remote procedure call. To give another example, suppose a call passes two
parameters: a data structure and a pointer to the type of the data structure, set to NULL. If the server
application then sets the pointer to point to the data structure, the client stub will allocate new storage for
the returned data structure and set the returned pointer to point to it. As a result, the returned pointer will
not point to the original structure, but to a copy of it in stub maintained memory.

This may seem like an IDL limitation, but in fact, the real issue is that the client and server address
spaces are different, and some operations in one address space cannot be reflected in the other.
Specifically, the server application cannot meaningfully interpret an address in the client address space,
and vice versa. So, as in the last example, the server cannot set a pointer to point to a structure in the
client address space; it can only ask the client stub to mirror any changes made at the server.

Memory Allocation Routines: The stubs will do their best to allocate any new memory required
for marshalled pointed-to nodes so that the marshalling is transparent to the application. On the server
side, stub allocated memory exists for the scope of the manager routine call. The stub frees such memory
once the nodes have been marshalled. On the client side, however, the stubs obviously cannot free the
memory they have marshalled since they are returning the data to the client application. Therefore, in
order to avoid memory leaks, when a client makes an RPC that results in the client stub allocating
memory, the client application needs to call rpc_sm_client_free() to free the pointed to memory.

When a server manager routine needs to allocate new memory for a pointed-to node, it can do so either
statically or by making a call to a memory allocation routine. In the latter case, however, the manager
cannot deallocate the memory it has allocated, since the pointer must be valid when the call returns (so
that the stubs can marshall the data). Only the stub can free such memory. In order to permit this, server
managers need to call rpc_sm_allocate() to allocate memory for parameters. The stubs free all memory
allocated by rpc_sm_allocate() once they have marshalled the required data, thus avoiding memory
leaks.

Pointer Types: For reasons of efficiency, IDL distinguishes between reference [ref], full [ptr], and
unique [unique] pointers. As we saw above, even though pointers are used by applications to pass data
by reference, the lack of shared address space means that the stubs have to pass the data by value and
provide the receiver with a reference to the passed data.

In the simplest case, a pointer always points to the same memory: that is, its value does not change. In
such a case the stubs always marshall the passed value from and to the same memory location on the
sender and receiver respectively. This style of marshalling is provided by [ref] pointers.

When the value of a pointer changes during a call, the stubs have a more complex task. Suppose, for
example, an [in, out] pointer is NULL before an RPC and is set by the server application to point to some
data structure allocated by the server. As in the [ref] pointer case, the server stub needs to marshall the
(new) referent and the client to unmarshall it, but the client stub also needs to do two more things: it
needs to allocate space for the unmarshalled referent, and it needs to point the previously NULL pointer to
it. Similarly, for a pointer that initially points to one memory location and is changed during an RPC to
point to another, the client stub needs to allocate new memory to hold the unmarshalled value of the new
referent and to change the pointer value accordingly. Not all of the extra work is confined to the client
stub either. Obviously, the client stub needs to find out that the value of the pointer has changed, so the
server has to marshall, and the RPC protocol has to transmit, extra data to indicate this. This style of
marshalling is provided by full ([ptr]) pointers, and it obviously requires more overhead than reference
pointer marshalling.

 Chapter 8. RPC Parameters 249

Unique pointers provide for an intermediate case: a pointer that always points either to a single memory
location or is NULL. Such a pointer may change from NULL to a non-null value or from a non-null value
to NULL, but never has more than one non-null value. Such a pointer is marshalled more efficiently than
a full pointer, but not as efficiently as a reference pointer.

Applications should consider the [ref] and [unique] pointer types as optimizations. A full [ptr] pointer can
always be used. The [ref] and [unique] pointer types may be used whenever the application is
guaranteed to meet the restrictive conditions under which these types work.

As a guide to using the pointer types, there are a few general rules and a number of special cases, having
mainly to do with embedded pointers and data of variable size. The rules are:

� In passing parameters, you need to distinguish carefully between top-level and lower-level pointers. A
top-level pointer is a pointer passed as an argument to a call. A lower-level pointer is one contained
in the referent of a top-level pointer. The directional semantics [out] and [in, out] both require
parameters to be passed by reference and hence always require a top-level pointer.

The model is, essentially, that the client provides a container into which the returned value is written.
In the [out] parameter case, the contents of the container are assumed to be unimportant on input
and are not marshalled by the client stub. In the [in, out] case, the contents are assumed to be
meaningful and are passed to the server.

The top-level pointer is thus the address of the parameter “container,” and obviously, this value should
not change during the course of the call. If it did, the return value would be written to some
undetermined place in the client address space. Hence, the top level of [out] and [in,out] parameters
have reference pointer semantics. The IDL compiler enforces this for [out] parameters by permitting
only the [ref] attribute. It does not force this for [in, out] parameters, but the behavior is exactly the
same. Remember, the actual parameters of an RPC call are always passed by value: hence a call
cannot change the value of a top-level pointer. It can only change the value of something passed by
reference.

� To pass an [in] parameter by reference, you can pass its address as a pointer of either style. The
server stub will allocate and deallocate the required memory for the pointer referent. Since an [in]
pointer has no reason to change its value, it is at least slightly more efficient to use a reference pointer
in this case.

� Since [out] semantics do not consider the contents of such storage to be meaningful, an [out]
parameter is not marshalled on the call. The server stub will allocate memory to hold the referent as
long as the size of the referent is known at compile time. The stub obviously cannot allocate memory
for referents whose size is determined arbitrarily by the server application. For such parameters (such
as linked lists) the server application must allocate space. One tricky case to consider is a linked list.
The server stub allocates space for the head element, since it knows the size of such an element.
The server manager then allocates space for the remaining elements and marshalls them back to the
client. The client stub will allocate all necessary space for the server-created receive parameters.

A server-created structure may contain reference pointers which the server may then set to point to
objects it also allocates. All of this will be mirrored by the client stub. Note that this does not violate
the rules for reference pointers, since the contained pointers do not change value during the call; they
are created by the server application and passed back to the client exactly the same way that top-level
reference pointers are created by clients and passed to servers.

When an application wishes to have the callee allocate space for an [out] parameter, it needs to use
two levels of indirection: a reference pointer to a full pointer to the data structure to be allocated. The
client allocates the full pointer, setting it to NULL, and passes its address to the call. The server
application then allocates the data structure and sets the full pointer to point to it. The client stub will
then allocate space for the data structure on the return.

250 DCE Application Development Guide: Introduction and Style

� An [in,out] reference pointer behaves exactly like the [out] reference pointer case, except that the
server stub may be able to allocate space for a referent even if its size is not known at compile time.
This will be the case when the client application creates an instance of a variable sized referent, such
as a linked list. In such a case, the server stub will allocate sufficient space for the referent supplied
by the client.

� You must take care when a server deallocates a [ptr] pointer referent. For an [in,out] parameter, the
client-side stub does not deallocate the client-side referent, but the application should treat the referent
as undefined, as if, in effect, the deallocated pointer referent had been unmarshalled by the client
stub. By default, in the case of an [in] parameter, the value of the pointer referent remains
unchanged on the client side. However, this default behavior can be modified by applying the
[reflect_deletions] attribute to the operation. In this case, the client-side stub will deallocate the
pointer referent. The client and server must use the rpc_sm* routines to allocate and free memory for
this reflection of deletions to work.

� For an [in,out] parameter which is a [ptr] pointer, if the server sets the parameter value to NULL, the
client will no longer be able to dereference the pointer on return. If the client has no other means to
reference the original pointed-to node, the node is said to be “orphaned”: the client will be unable to
free it.

Pointer Examples: The following sample code demonstrates the basic properties of pointers. The
first example demonstrates pointer arithmetic and how changes in the server address space can be
reflected back to the client using full pointers. In the .idl file we declare a type that is an array of three
integers, and a type that is a pointer to an integer. The operation takes the array as an [in] parameter
and the pointer as an [in,out] parameter.

const unsigned32 ARRAY_SIZE = 3;

typedef unsigned32 num_array[ARRAY_SIZE];
typedef [ptr] unsigned32 "num_ptr;

 void ptr_test1(
[in] handle_t handle,
[in, out] num_ptr "client_ptr,
[in] num_array client_array,
[out] error_status_t "status

);

The server manager code to implement this points the client pointer to the beginning of the array and then
increments it once:

 void
 ptr_test1(
 handle_t h,
 num_ptr "client_ptr,
 num_array client_array,
 error_status_t "status
)
 {

"status = @;
"client_ptr = client_array;

 ++("client_ptr);
 }

On return, the client's version of the pointer will point to memory that holds the second element of the
array. It will not point to the array itself, however. The client code demonstrates this:

 Chapter 8. RPC Parameters 251

num_ptr client_ptr = NULL;
num_array client_array = {25, 5@, 75};

ptr_test1(binding_h, &client_ptr, client_array, &status);

 /"
" The test function pointed the client pointer to the
" second array element. On return, this points to memory
" that holds this value.

 "/

printf("Client pointer points to %i\n", "client_ptr);

/" However, if we now increment the pointer, it
" points to unintialized memory. This shows the
" limits of mirroring.
" """ WARNING: You may dump core here !! """

 "/

 client_ptr++;
printf("Client pointer now points to %i\n", "client_ptr);

What happens here is that the client stub allocates space for the new referent of client_ptr when the call
returns. This space now holds the value in the second element of the array. The pointer no longer points
to the original array but to this newly allocated space. You can see this clearly when the client attempts to
increment the pointer. Instead of pointing to the third element of the array, it points to some undetermined
place in memory, and the client may fail when it tries to dereference the pointer.

As an exercise, you could change the code to declare a pointer to the num_array defined type rather than
to an integer. Then you could have the server manager point this to the input array and return it without
incrementing the pointer. The returned pointer will now reference a copy of the original client array with all
its elements. It will not, however reference the original array itself.

The second pointer example illustrates passing a linked list. The .idl declaration is as follows:

typedef struct link {
 unsigned32 value;

[ptr] struct link "next;
 } link_t;

 void ptr_test2(
[in] handle_t handle,
[in, out, ref] link_t "head,
[out] error_status_t "status

);

The server manager code is as follows:

 void
 ptr_test2(
 handle_t handle,
 link_t "head,
 error_status_t "status
)
 {
 link_t "element;

 if (head)
 {

element = head;
 while (element->next)

element = element->next;

252 DCE Application Development Guide: Introduction and Style

/" Add another element to the list... "/
element->next = (link_t") rpc_sm_allocate(sizeof(link_t), status);
if ("status == rpc_s_ok)

 {

element->next->value = element->value " 2;
element->next->next = NULL;

 }
 }

if ("status == rpc_s_ok)

"status = error_status_ok;
 };

The manager operation adds a new element to the end of the linked list. Note that the head parameter
has [in, out] semantics here: we must pass in a pointer to a valid element. (The next example shows
how to implement an [out] parameter that is allocated by the operation.)

In this and the following example, we use rpc_sm_allocate() to allocate data on the server side. This
gives the semantics you probably want for a dynamically allocated referent for a pointer parameter: on
return, the data is automatically deallocated on the server, and further manager operations that access this
data do so via a pointer parameter passed by the client. Memory leaks on the server are thus avoided.

An application must be very cautious if it attempts to use pointer parameters in a way that contradicts
such semantics: for example, by returning a pointer to static global storage on the server. In such a
case, the server and client versions of such storage can easily become inconsistent. A context handle,
which the client must not modify, is typically what you want in such a case.

The client code for the linked list test is:

link_t first, "element;
 int i;

first.value = 2;
first.next = NULL;

for (i = @; i < 8; i++)
ptr_test2(binding_h, &first, &status);

element = &first;
 while (element->next)
 {

printf("%i, ", element->value);
element = element->next;

 }
 printf("%i\n", element->value);

The client passes in the head element, and then calls the server several times to add more elements to
the list. Finally, the client prints out the list.

The next pointer example illustrates how the stubs automatically allocate memory for an [out] parameter.
The client application allocates a NULL pointer to the data structure of interest and passes the address of
this pointer as the [out] parameter. The server manager allocates a structure, and on return the client
stub allocates it too, automatically.

The .idl declaration is as follows:

typedef struct {
[ref] unsigned32 "value;

 } number;

typedef [ptr] number "number_ptr;

 Chapter 8. RPC Parameters 253

 void ptr_test3(
[in] handle_t handle,

 [out, ref] number_ptr "client_ptr,
[out] error_status_t "status

);

The server manager operation is then:

 void
 ptr_test3(
 handle_t handle,
 number_ptr "client_ptr,
 error_status_t "status
)
 {
 number_ptr nptr;
 unsigned32 "nval;

nptr = (number_ptr) rpc_sm_allocate(sizeof(number), status);
if ("status == rpc_s_ok)

 {
nval = (unsigned32 ") rpc_sm_allocate(sizeof(unsigned32), status);

if ("status == rpc_s_ok)
 {

"nval = 256;
nptr->value = nval;
"client_ptr = nptr;

 }
"status = error_status_ok;

 }
if ("status == rpc_s_ok)

 };

The client test code looks like this:

number_ptr client_ptr = NULL;

ptr_test3(binding_h, &client_ptr, &status);
printf("Value = %i\n", (unsigned32)" (client_ptr->value));

Note the use of [ref] pointers here. The top-level [ref] pointer (the one passed as a parameter to the call)
must point to valid storage when the call is made even though the pointer is not marshalled when the call
is made. This follows the rules for [ref] pointers: they may not be NULL and may not change value during
a call. The returned structure also contains a [ref] pointer, and the client stub does automatically allocate
space for its referent when the call returns. This is an exception to the rule that an [out] [ref] pointer
must point to valid storage when the call is made. In this case, the pointer is embedded in a structure
which is created by the server. As long as the top-level pointer points to valid storage (to hold the
returned structure), the client stub will allocate space for the referents of any newly-created [ref] pointers
that it contains.

The final example illustrates node deletion. The .idl declaration is as follows:

[reflect_deletions] void ptr_test4(
[in] handle_t handle,
[in, out, ptr] unsigned32 "number,
[out] error_status_t "status);

The server code to implement this operation frees the memory pointed to by the input pointer and returns
the pointer:

 void
 ptr_test4(
 handle_t h,

254 DCE Application Development Guide: Introduction and Style

 unsigned32 "number,
 error_status_t "status
)
 {

"number = 32;
 rpc_sm_free(number, status);

"status = error_status_ok;
 };

The client code is as follows:

 unsigned32 "num;

 rpc_sm_enable_allocate(&status);
num = (unsigned32") rpc_sm_allocate(sizeof(unsigned32), &status);
if ("status == rpc_s_ok)

 {
"num = 64;
ptr_test4(binding_h, num, &status);

 }

There are so many ways to use (and misuse) IDL pointers that it would be impossible to give a complete
set of examples. The section on arrays contains more pointer examples.

 Context Handles

Context handle semantics vary according to the application role. On the server side, the semantics are
those of a full pointer. To the client application, a context handle has similar semantics to a fully bound
server binding handle, except that the client may not perform any operations to modify it. To the client it
represents a binding to context maintained by a specific a server instance. Because the context handle
may also specify an object UUID, it may also bind to a specific type manager in the server instance; that
is, a context handle refers to context maintained by a specific type manager in a specific server instance.
It is valid over a series of calls within this scope. To enforce this, a context handle is intended to be
passed as an explicit binding parameter for each operation that refers to the maintained context. Any
attempt to use a context handle outside this scope will fail. Context handles are described in more detail
as an RPC application development topic in the z/OS DCE Application Development Guide: Core
Components.

 Arrays

Array parameters provide an efficient way to pass contiguous blocks of data with little application
overhead. The stubs take care of serializing and reassembling the passed data transparently to the
application. When an application is interested in passing an entire buffer or some contiguous portion of a
buffer synchronously — so that all of the data is made available to the receiver at the same time —
arrays provide the most efficient mechanism. Pipes provide no advantage unless the data is to be
processed asynchronously.

Arrays may be passed as RPC parameters, but, as in the case of other RPC data, the stubs need to know
the size of data to be marshalled. The simple solution is to declare arrays of fixed size in the IDL. This
can be inefficient however, since array sizes may vary at runtime, and since not all data in an array may
need to be passed on every call. Therefore, IDL provides a variety of field attributes (max_is, min_is,
size_is, last_is, first_is, and length_is) to permit the size and bounds of the marshalled data to be
determined at runtime. Note that passing a pointer to an array is not any more efficient as a way to deal
with the problem of varying array sizes. Remember that marshalling a pointer requires marshalling the
pointer's referent, so the array data will be marshalled anyway. Note also that the IDL language does not
permit declaring a pointer to a varying array.

 Chapter 8. RPC Parameters 255

The size of the array data marshalled is determined in one of two ways. In a conformant array, the size of
the array is not declared in the IDL declaration, and one of the max_is or size_is attributes is used to
determine the size of the marshalled data at run time. In a varying array, the size of the array is declared
in the .idl file, but one or more of the other field attributes determines what range of elements is actually
marshalled. Arrays may be both conformant and varying at the same time.

Each field attribute is associated with some variable whose value is known at run time. The scope of this
association is within either an operation declaration or a structure declaration. That is, when the array is a
parameter of an operation, the field attribute variables must also be parameters of the same operation.
Similarly, when the array is a member of a structure, the field attribute variables must be members of the
same structure.

The following samples show a series of array declarations using some of the many possible forms:

/" An array of fixed size "/

typedef char char5array[5];
typedef char5array "char5ptr;

 void array_test1(
[in] handle_t handle,
[in] char5ptr a_pointer,
[out] error_status_t "status);

/" A conformant array: the size is determined at run time "/

 void array_test2(
[in] handle_t handle,
[in] unsigned32 size,
[in, size_is(size)] char an_array[],
[out] error_status_t "status);

 /"
" A varying array: the portion of the array transmitted is
" determined at run time

 "/

 typedef struct{
 unsigned32 first;
 unsigned32 length;

[first_is(first), length_is(length)] char array[@..1@];
 }v_struct;

 void array_test3(
[in] handle_t handle,
[in] v_struct v_array,
[out] error_status_t "status);

 /"
" A conformant and varying array: both size and the portion
" transmitted are determined at run time

 "/

 typedef struct{
 unsigned32 size;
 unsigned32 first;
 unsigned32 length;
 }cv_struct;

256 DCE Application Development Guide: Introduction and Style

 void array_test4(
[in] handle_t handle,
[in] cv_struct "cv_array,
[out] error_status_t "status);

The examples show clearly how field attribute variables are related to array declarations.

In the second operation declaration, a conformant array is declared as an operation parameter (an_array),
so that the field attribute variable (size) must also be a parameter of the interface. In the third and fourth
operations, varying and conformant-varying arrays are declared within structures, so that the field attribute
variables (size, first, and length) must also be members of the same structures.

The server manager sample code to test these declarations is as follows:

 void array_test1(
 handle_t handle,
 char5ptr a_pointer,
 error_status_t "status
)
 {

printf("Array test 1\n");
printf("%c %c \n", ("a_pointer)[@],("a_pointer)[1]);
"status = error_status_ok;

 };

 void array_test2(
 handle_t handle,
 unsigned32 size,
 idl_char an_array[],
 error_status_t "status
)
 {
 unsigned32 i;

printf("Array test 2\n");
for (i = @; i < size; i++)

 {
 printf("%c ",an_array[i]);
 printf("\n");
 }

"status = error_status_ok;
 }

 void array_test3(
 handle_t handle,
 v_struct v_array,
 error_status_t "status
)
 {
 unsigned32 i;

printf("Array test 3\n");
for (i = v_array.first; i < v_array.first + v_array.length; i++)

printf("subscript %i value %c\n", i, v_array.array[i]);
"status = error_status_ok;

 }

 Chapter 8. RPC Parameters 257

 void array_test4(
 handle_t handle,
 cv_struct "cv_array,
 error_status_t "status
)
 {
 unsigned32 i;

printf("Array test 4\n");
for (i = ("cv_array).first; i < ("cv_array).first + ("cv_array).length; i++)

printf("subscript %i value %c\n", i, ("cv_array).array[i]);
"status = error_status_ok;

 }

The client sample code is as follows:

char5array fixed_array = {'a','b','c','d','e'};

v_struct varying_array = {3,4,{'a','b','c','d','e','f','g','h','i','j'}};

 struct {
 unsigned32 size;
 unsigned32 first;
 unsigned32 length;
 char array[1@];

}cv_array = {1@, 4, 5, {'a','b','c','d','e','f','g','h','i','j'}};

array_test1(binding_h, &fixed_array, &status);

array_test2(binding_h, 5, fixed_array, &status);

array_test3(binding_h, varying_array, &status);

array_test4(binding_h, &cv_array, &status);

The server output will look like this:

Array test 1
 a b

Array test 2
 a
 b
 c
 d
 e

Array test 3
subscript 3 value d
subscript 4 value e
subscript 5 value f
subscript 6 value g
Array test 4
subscript 4 value e
subscript 5 value f
subscript 6 value g
subscript 7 value h
subscript 8 value i

258 DCE Application Development Guide: Introduction and Style

Note that for the last test, the declared structure contains a conformant and varying array. The C
language does not provide any intrinsic support for conformant arrays, and the actual IDL-generated
header declaration for the type cv_struct looks as follows:

 typedef struct {
 unsigned32 size;
 unsigned32 first;
 unsigned32 length;
 idl_char array[1];
 } cv_struct;

The declared structure contains an array only one element in length. When creating an instance of this
type, the application must allocate a data structure of the correct size, either statically, as in the sample
client code (the data item cv_array), or dynamically. The recipient of such a data structure (in this case,
the server manager code), can then determine the actual size of the marshalled data by examining
relevant field attribute variables (in this case, the structure's size member). Note also that IDL requires a
structure containing a conformant array to be passed “by reference”; that is, as a pointer referent.

Conformant and varying arrays provide a way to pass blocks of contiguous data of varying sizes and
ranges. However, there is no intrinsic mechanism for passing sparse arrays efficiently. Applications may,
however, supply their own mechanisms for compressing and passing large, sparse arrays using the
[transmit_as] mechanism.

There are a number of complications that can arise when using arrays of pointers. For example, an [out]
or [in,out] conformant array of pointers, accompanied by an [out] or [in,out] field attribute variable, could
potentially be of any size when returned to a caller. For [ref] pointers, which may not be NULL, the client
must therefore ensure that all possible returned pointers in such an array actually point to valid storage.
You can easily avoid such complications by sticking to the more straightforward array usages discussed
here.

Structures and Unions

There are no important policy issues relating to structures and unions as RPC parameters. Pointers and
arrays as members of structures and unions are sometimes treated differently from separately declared
types. By embedding pointers and arrays in structures and unions, you can sometimes achieve behavior
that cannot be obtained by passing them as separate parameters.

Structures and unions can be used wherever they would be used in a non-RPC application. IDL
structures differ from C language structures in one important respect: they may contain conformant
arrays, which are not supported by C. A structure that contains a conformant array is itself conformant;
that is, the size of the structure may not be determined until runtime. Applications need to do some extra
work to determine the size of, and allocate, conformant structures. When structures are used to create
linked lists and trees, the stubs do considerable work to insure that server allocated data is reflected back
to the client.

IDL union syntax is quite different from C syntax, since IDL unions must be discriminated so that stubs
can determine which of the contained data types to marshall. As with conformant and varying arrays,
which use a field attribute variable to determine array size and bounds at run time, IDL unions use a
discriminator variable to determine which data type is marshalled.

IDL unions may be encapsulated or nonencapsulated. In an encapsulated union, the IDL compiler
packages the union type and the discriminator in a structure. In a nonencapsulated union, the IDL
[switch_is] attribute is used to identify a discriminator variable. In this case, as in the case of array field
attribute variables, the application must declare the discriminator and the union together, either as
members of a structure or as parameters of an operation.

 Chapter 8. RPC Parameters 259

When a union is passed as a parameter, the value of the discriminator must either match one of the
constants declared in the switch construct, or the switch must contain a default case. Otherwise, a stub
marshalling error will occur.

Following are several examples of IDL union syntax. They are accompanied by the resulting IDL
generated C header file declarations, and show how applications must refer to the union constructs
declared in the IDL. The first example shows a set of declarations for an encapsulated union. The union
holds either of two structures, one containing UUIDs, the other unsigned integers.

typedef struct two_uuid_s_t {
 uuid_t uuid1;
 uuid_t uuid2;
 } two_uuid_t;

typedef struct two_uint_s_t {
 unsigned32 uint1;
 unsigned32 uint2;
 } two_uint_t;

typedef enum {
 uuids,
 uints
 } union_contents;

typedef union switch (union_contents type){
 case uuids:
 two_uint_t integers;
 case uints:
 two_uuid_t ids;
 } test_union_t;

The resulting IDL generated C header declarations look like as follows:

typedef struct two_uuid_s_t{
 uuid_t uuid1;
 uuid_t uuid2;
 }two_uuid_t;

typedef struct two_uint_s_t{
 unsigned32 uint1;
 unsigned32 uint2;
 }two_uint_t;

 typedef enum{
 uuids,
 uints
 }union_contents;

 typedef struct{
 union_contents type;
 union {

/" case(s): @ "/
 two_uint_t integers;

/" case(s): 1 "/
 two_uuid_t ids;
 } tagged_union;
 }test_union_t;

260 DCE Application Development Guide: Introduction and Style

The IDL compiler packages the encapsulated union as a structure with the discriminant as the first
member. To pass the union as an [in] or [in,out] parameter, the calling application must set the type field
of this structure to either of the enumeration values integers or ids. To return the union as an [out] or
[in,out] parameter, the callee must similarly be sure that the value of the type field is correctly set. To
discover which data type was marshalled, the recipient can check the value of the type field.

The following is an example of nonencapsulated union usage. The .idl declaration is as follows:

 typedef
[switch_type(long)] union {

[case (1,3)] float a_float;
[case (2)] short b_short;
[default]; /" An empty arm "/

 } n_e_union_t;

The C header declaration of the nonencapsulated union generated by the IDL compiler is as follows:

 typedef
 union {
 float a_float;
 short b_short;
 } n_e_union_t;

In this case, the discriminant must be separately declared in order for the union to be marshalled. The
IDL [switch_is] attribute identifies the discriminant for an instance of the declared union type. Two
examples of such .idl declarations follow:

 /"
" A structure that includes the union declared above and a member
" that is used as the discriminant. This structure can be passed
" as an RPC parameter.

 "/

 typedef
 struct {
 long a;

[switch_is(a)] n_e_union_t b;
 } a_struct;

 /"
" An operation declaration that passes the declared union type along
" with a discriminant.

 "/

void op1 (
[in] handle_t h,
[in, switch_is (s)] n_e_union_t u,
[in] long s

);

 Pipes

Pipes allow application-level optimization of bulk data transfer, by allowing the communication and
processing of data to overlap. The actual data communications occur at about the same speed as arrays.
However, pipes can reduce latency (how soon the application sees each “chunk” of data) and increase
memory utilization. The intent is that the pipe routines should actually process the data and then get rid of
it (for example, summarize it; write it to a file; pass it to another thread) rather than merely write it into an
array. If an application desires to pass all of a stream of data and process it synchronously, then an array
will probably be more efficient, since it entails considerably less processing overhead, as well as being

 Chapter 8. RPC Parameters 261

simpler to program. For more on pipes as a topic in RPC application development, see the z/OS DCE
Application Development Guide: Core Components.

The transmit_as Attribute

The [transmit_as] attribute provides applications a way to do their own marshalling of data types. This is
primarily useful as a way to deal with data structures that the stubs cannot marshall efficiently, such as
sparse arrays. Following is an example of code to compress and reconstruct a large array by removing
and then replacing all the zero-valued elements:

The .idl declarations are as follows:

 /"
" Transmit_as example: Here we turn a large sparse array into
" a small conformant array for transmission. The server is able
" to reconstitute the sparse array.

 "/

const long int S_ARRAY_SIZE = 32;

 typedef struct{
 unsigned32 value;
 unsigned32 subscript;
 } a_element;

 typedef struct{
 unsigned32 size;

[size_is(size)] a_element array[];
 }compact_array_t;

typedef [transmit_as(compact_array_t)] unsigned32 sparse_array_t[S_ARRAY_SIZE];

 void ship_array(
[in] handle_t handle,
[in] sparse_array_t "array,
[out] error_status_t "status

);

All the callback routines are placed in a single module that is linked with both client and server (in this
case, for the test interface). As an alternative, the appropriate callbacks could be declared separately
within the client and server modules:

 /"
 " test_xmit.c:
 "

" The routines required to implement a [transmit_as] type.
 "/

 #include "test.h"

/" The to_xmit routine must allocate all space for the transmitted
" type. In general, the stubs have no way to determine how to allocate
" space for the transmitted type. Here, for example, the to_xmit
" routine determines the size of a conformant array.

 "/

void sparse_array_t_to_xmit(sparse_array_t "s_array,

262 DCE Application Development Guide: Introduction and Style

 compact_array_t ""c_array
)
 {
 unsigned32 i,j;
 unsigned32 csize;

/" Count up the number of non-zero elements in the sparse array "/

for (i = @, csize = @; i < S_ARRAY_SIZE; i++)
 {

if (("s_array)[i] != @)
 {
 csize++;
 }
 }

/" Allocate a structure to hold the compact array "/

"c_array = (compact_array_t ")calloc(csize"2 + 1, sizeof(unsigned32));
((compact_array_t)""c_array).size = csize;

/" Fill in the compact array from the non-zero elements "/

for (i = @, j = @; i < S_ARRAY_SIZE; i++)
 {

if (("s_array)[i] != @)
 {

((compact_array_t)""c_array).array[j].value = ("s_array)[i];
((compact_array_t)""c_array).array[j++].subscript = i;

 }
 }
 }

 /"
" The from_xmit routine may not have to allocate any space for the
" presented type. The presented type is always of a definite size
" (conformant, varying, etc. types are not permitted), so the stub
" provides an instance of the top level of the presented type. In
" this case, for example, s_array points to an instance of a sparse
" array. If the presented type contains any pointers, the from_xmit
" routine needs to allocate space for the referents and the free_inst
" routine needs to free them.

 "/

void sparse_array_t_from_xmit(compact_array_t "c_array,
 sparse_array_t "s_array)
 {
 unsigned32 i,j;

for (i = @; i < ((compact_array_t) " c_array).size; i++)
 {

j = ((compact_array_t)"c_array).array[i].subscript;
("s_array)[j] = ((compact_array_t)"c_array).array[i].value;

 }
 }

/" This routine is called to free anything allocated by the
" to_xmit routine.

 "/

 Chapter 8. RPC Parameters 263

void sparse_array_t_free_xmit(compact_array_t "c_array)
 {
 free(c_array);
 }

/" This routine is called to free anything allocated by the
" from_xmit routine. Since from_xmit doesn't allocate anything
" this is a null routine.

 "/

void sparse_array_t_free_inst(sparse_array_t "s_array)
 {

 }

The client code to exercise the sparse array transmitted type is as follows:

 sparse_array_t test_array;

/" Create a sparse array with only three non-zero members "/

 memset(test_array,@,sizeof(unsigned32)"S_ARRAY_SIZE);
test_array[@] = 2;
test_array[2@] = 4;
test_array[31] = 8;

 /"
" When compressed, this array requires 7 32-bit integers, as opposed
" 32 32-bit integers for the uncompressed array. If you don't care
" about reconstructing the sparse array on the server side, you can
" get even more efficiency.

 "/

ship_array(binding_h, &test_array, &status);

The server manager code is as follows:

 void ship_array(
 handle_t binding_h,
 sparse_array_t "array,
 error_status_t "status
)
 {
 int i;

 /"
" Print the elements of the sparse array.

 "/

for (i = @; i < S_ARRAY_SIZE; i++)
 {
 printf("%i\n", ("array)[i]);
 }

"status = error_status_ok;
 }

Note that the free_inst routine will not be needed if the transmitted type does not contain pointers.
However, the routine is called by the stub automatically in any case, so at least a null routine must be
provided. As an exercise, you might add printf()s to each callback to see when it is called. You could

264 DCE Application Development Guide: Introduction and Style

also add code to show the format of the transmitted array before it is reconstructed by the from_xmit
routine. Finally, you can create an even more efficient compression by not attempting to reconstruct the
original array on the server side.

 Chapter 8. RPC Parameters 265

266 DCE Application Development Guide: Introduction and Style

 Chapter 9. Server Management

Every DCE server requires some management. At a minimum, servers need to be started and stopped.
In addition, servers usually provide generic server information such as the server principal name and an
indication that the server is listening for remote calls. Servers may also permit other kinds of management
operations while they are running; it is perfectly feasible to have a server reinitialize or even unregister and
reregister endpoints while it is running.

From the management perspective, servers are thought of as either on-demand or persistent. In the
on-demand model, a server only starts (thus occupying system resources) when it is needed. When an
on-demand server is installed, a startup configuration is also installed with dced. Such a server would
then use the configuration (obtained by a call to the dce_server_inq_server() routine) when it is
auto-started by dced on receipt of an RPC request for an interface, operation, or object registered for that
server.

A persistent server is one that runs continuously. Starting, stopping and otherwise managing such a
server are typically considered privileged operations. In general, a robust persistent server should provide
a separate application control program that calls the DCE management interfaces (APIs for dced, RPC,
and the like) and the application's own management interface (if one is provided). Of course, a server
cannot start itself, but an application control client program can start the server via the dced. The model
looks similar to what is shown in Figure 133.

Figure 133. Managing a Server with a Control Client

In addition to starting and stopping the server, dced's management routines provide other control
operations. For example, the control program can use dced_server_disable_if() and
dced_server_enable_if() to disable and re-enable specific interfaces offered by the server.
Application-specific management operations can be used to exert even finer control than is possible with
the DCE-provided services.

 Copyright IBM Corp. 1994, 2001 267

Application Support for Server Management

Applications can support server management at three levels. At a minimum, every server automatically
supports the RPC Management API (routines the begin with rpc_mgmt_). By attaching an authorization
function to the management interface (via a call to rpc_mgmt_set_authorization_fn()), a server can set
non-default access to the generic management functions. Although these routines give a management
program some control of the server, some of these routines only work locally, so the controlling client must
run on the same host as the server.

At the second level, all servers should permit themselves to be managed from remote hosts via the dced.
The requirements in the server's initialization code are minimal:

1. The server should establish a security state using the dce_server_sec_begin() call. This call
establishes the server's identity with the RPC runtime such that clients can make authenticated remote
procedure calls to it. The call also establishes with the Security Service the server's identity so that it
can make authenticated remote procedure calls to other servers.

Server writers should also give the dced (which runs with the host's principal identity) permission to
control the server. Since the default is to disable remote control, the server must provide a
non-default authorization function that gives the machine principal access. An example of such an
authorization function is given in Chapter 5, “Security” on page 163.

2. The server must register as a DCE server using the dce_server_register() call. This call fulfills the
majority of the server initialization tasks including creating bindings, registering interfaces with the RPC
runtime, registering endpoints with dced's endpoint mapper service, and advertising in the name
service.

All servers should take these steps to operate correctly in DCE.

Finally, applications can provide application-specific server management. This would typically be done for
a persistent server that provides access to some shared resource such as a database. Such a server can
provide a set of privileged management operations—such as database maintenance—as a separate
application-specific management interface. Such an interface can be accessed by an application
management client that can also call the DCE management interfaces. This type of management client is
shown in Figure 133 on page 267.

 Manager Initialization

Server initialization tasks can typically be divided between essentially generic initialization—creating
bindings, establishing security state, exporting to a name service, and listening for calls, among other
things—and manager-specific initialization. (Remember that management refers to a set of tasks to
control a server while a manager is a server's implementation of a set of operations from one or more
interfaces.)

Once the server has called rpc_server_listen(), the manager operations may be called asynchronously.
The application may, however, need to perform some initialization before any manager operations are
performed. For example, the sample storage manager (code example context_manager.c) needs to
initialize its tables before any storage can be allocated out of them. An application has three choices
about manager initialization policy:

1. The server can perform manager initialization before calling rpc_server_listen().

2. The server can have the first instance of a manager operation thread perform manager initialization,
using the pthread_once() facility. Although initializing everything prior to listening for remote
procedure calls is more straight-forward programming, some applications might benefit from this

268 DCE Application Development Guide: Introduction and Style

threaded approach. For example, those operations that do not need the initialization could forgo use
of the pthread_once() facility. This is the approach demonstrated in the sample storage manager.

3. The server can export manager initialization operations as part of its application-specific management
interface, and have a management client perform the initialization.

Options 1 and 2 have similar effects and are appropriate for most servers. Option 3 might be appropriate
for a persistent server where reinitialization of the running server is a useful operation. Such an operation
is a perfect candidate for inclusion in an application-specific management interface for a persistent server.

 Chapter 9. Server Management 269

270 DCE Application Development Guide: Introduction and Style

Appendix A. A Sample Application

This chapter discusses the code for a generic sample application called sample that illustrates the
recommended policies. The code is as generic as possible in the sense that it demonstrates things that
most servers need to do. This generic server code is contained in the sample_server.c and
sample_server.h modules. The application-specific portion consists of a set of simple examples to
illustrate various styles of RPC data usage, including: pointers, pipes, and context handles. These
illustrations are contained in sample_manager.c (the server side) and sample_client.c (the client side).
sample.idl contains a set of sample interface definitions for the illustrated usages.

The source code for sample can be found in the /usr/lpp/dce/examples/sample directory.

 Getting Started
See the README file for instructions on building and running the sample code.

A generic Makefile (Makefile) is included that is suitable for building the sample code. Also included are
two dcecp TCL scripts, sample_setup.dcecp and sample_unsetup.dcecp that automate the creation
and removal of data that the sample program needs (such as CDS entries).

The Generic Server

The generic server implemented by sample_server.c demonstrates a variety of tasks that most servers
need to carry out, such as exporting bindings, creating an authentication identity, establishing an ACL
manager, and handling asynchronous signals. As much as possible, the bulk of each task is implemented
as one or more separate functions. This modularity makes it easier to understand the requirements for
coding each task since each function or related set of functions can be studied separately. Also, because
the tasks performed are fairly generic, the functions should be reusable in something close to the form
presented here by many servers.

The IDL file sample.idl is included mainly to demonstrate the data type declarations used for the ACL
manager.

The IDL file sample_db.idl and the ACF file sample_db.acf are required to generate a server-only stub
for the database serialization routines used by the ACL manager.

The generic server is then implemented by sample_server.h and sample_server.c.

Note that the server code contained in these files is nearly all generic. In the ACL manager, the only
application specific elements are the type of data stored in the object database, declared in sample.idl,
and the name and object UUID for the initial object created during ACL manager setup. The export
objects operation uses application-specific names and object uuids. The signal catcher thread installs
application-specific handling for asynchronous signals, although the actual signal handling code simply
causes the listen loop to return and invoke the generic cleanup operations.

 Copyright IBM Corp. 1994, 2001 271

Manager and Client

Most of the application-specific server code is contained in sample_manager.c. Since generic client
tasks are so simple, the whole client is contained in sample_client.c.

Object Bind Interface

The remote binding interface is implemented in sample_bind.c. The server and client stubs used for
registering and binding the sample_bind interface are generated by sample_bind.idl and
sample_bind.acf. See sample_client.c and sample_server.c on how this is accomplished.

272 DCE Application Development Guide: Introduction and Style

Appendix B. Another Sample DCE Application: TIMOP

This chapter begins with a discussion of IDL and the interface-definition process. It then introduces the
commented client and server source code for TIMOP, a sample DCE application.

Developing a DCE Application

Your first step in coding a DCE application is to define one or more interfaces through which the
application’s clients and servers communicate. Interfaces are defined in a declarative Interface Definition
Language (IDL), which is similar to C, and then compiled by the IDL compiler.

Interfaces, like most other objects and entities in DCE, are identified to the system by associating each
one with a 128-bit Universal Unique Identifier (UUID). Generating a UUID for your application’s interface
is the very first step in the IDL process. See z/OS DCE Application Development Reference for details on
using uuidgen. Run the uuidgen utility with the -i option (to specify an interface UUID) and the -o option
(to specify an output file called happy).

In the z/OS UNIX System Services shell, assuming you are using HFS files, the command is as follows:

uuidgen -i -o happy.idl

In batch, assuming you use PDS files, run UUIDGEN using the following JCL:

//JOBNAME JOB (ACCOUNT)...your_job_parameters
//""
//" JCL to run UUIDGEN "
//""
//UUIDGEN EXEC UUIDGEN,
// PARMS='-i -o //DD:UUIDOUT'
//UUIDOUT DD DSN=USERPRFX.IDL(HAPPY),DISP=SHR

Running the UUIDGEN generates a skeleton IDL file for HAPPY that contains a new UUID and little else. It
is your task to add the rest.

Thus, the simplified development cycle for a DCE application is as follows:

1. Write and compile the IDL file.
2. Write and compile the server and manager implementation code.
3. Write and compile the client implementation code.
4. Link the server object code with the server stub object code, the DCE library, and the definition

side-deck for the DCE DLL.
5. Link the client object code with the client stub object code, the DCE library, and the definition

side-deck for the DCE DLL.
6. Try running the completed application.

Some of the steps may have to be executed repeatedly.

Figure 134 on page 274 illustrates this process for both the server and the client modules of TIMOP.

 Copyright IBM Corp. 1994, 2001 273

Figure 134. How A DCE Application Is Produced

Both the server and the client compilation phases are illustrated. As noted in the figure, these can occur
on different machines. Note that the interface UUID is generated only once.

274 DCE Application Development Guide: Introduction and Style

The numeric reference keys in the figure indicate the order of the development steps as follows:

�1� Run uuidgen to get a skeleton IDL file containing a newly generated UUID.

Complete the file with your interface operation definitions.

�2� Compile the completed interface definition file with the IDL compiler.

�3� Write the source-code implementation of the interface operations in the various application C-source
files and header files,
 and compile them with the header file generated from the IDL compiler.

�4� Link the output of the previous step with:

� The stub module produced by the IDL compiler
� The DCE library, libdce
� The definition side-deck associated with the DCE DLL.

Of the server files shown in the figure, you are responsible for writing the following:

Table 11. Timop Server Source Files

HFS File Name PDS Name Description

timop.idl USERPRFX.IDL(TIMOP) A skeleton IDL file generated by uuidgen.

timop.acf USERPRFX.ACF(TIMOP) An optional file that affects interaction between
stub and code module.

timop_manager.c USERPRFX.C(TIMOPMR) Implementation of interface operations.

timop_server.c USERPRFX.C(TIMOPSR) Server setup and related routines.

timop_refmon.c USERPRFX.C(TIMOPRM) Server reference monitor.

timop_server.h USERPRFX.H(TIMOPSR) Server data declarations.

Of the client files shown in the figure, you write the following files:

Table 12. Timop Client Source Files

HFS File Name PDS Name Description

timop_client.h USERPRFX.H(CLIENT) Client data declarations

timop_client.c USERPRFX.C(CLIENT) Client module

timop.h USERPRFX.H(TIMOP) Common header file, which is the same for
both the server and the client. The TIMOP
IDL and ACF source files that are used for the
server compilation are also used by the client.

timop_aux.h USERPRFX.H(TIMOPAX) Auxiliary header file, used in both the TIMOP
server and the client applications.

The attribute configuration file, in the figure is optional. Its input to the IDL compiler alters the IDL
compiler’s output in various ways.

There is one other important option. The IDL compiler actually operates by first creating C source
modules, and then invoking the C compiler to produce its object file output from the C source. Normally,
the C source files are then deleted. You can specify that the C source be kept, in which case these
source files appear as output too. This possibility is shown in dotted lines in the figure. The IDL
compiler’s use of the C compiler is not shown in the diagram.

 Appendix B. Another Sample DCE Application: TIMOP 275

A server can implement more than one interface. These interfaces must be defined in separate IDL files
and compiled separately by the IDL compiler. The interface operations that are implemented in various
source code files are then linked with the IDL compiler output.

What Do Stub Files Do?

The client and server stub files output by the IDL compiler consist of RPC routines that handle all the
mechanical details of packaging and unpackaging data into messages to send over the network. They
also handle sending and receiving of the data. This is done in accordance with the specifications you
make in the IDL and ACF input files. The IDL file specifications determine how the client/server interaction
occurs over the network (the network protocol). The specifications in the ACF file, if it exists, only affect
the way the client’s and possibly the server’s application code interacts with their respective stubs.

TIMOP — A Complete Sample Application

The TIMOP program is a tutorial DCE application sample. It exercises the basic DCE technologies:

 � Threads
 � RPC
 � Security
 � Directory
 � Time.

TIMOP is not intended to be a model of general application programming techniques. Production
applications would typically feature better fault management, use getopt(), use a Motif** interface,
internationalization, performance optimization, and so on. None of the above is important for this tutorial.
TIMOP tries to be straightforward and illustrative of DCE, as much as possible given the complexity of the
technologies involved.

To run TIMOP, you must have a DCE cell up and running. This means the systems on which you run the
TIMOP client or server must support thread-safe system interfaces (for example, printf()). Note that the
MVS/ESA library functions are thread-safe. Also, you must be registered as a DCE principal or at least
know the password of a principal in your cell to do authenticated RPCs, and be authorized to use certain
facilities of the cell (such as the Registry Editor and namespace interface).

What TIMOP Does

The TIMOP program has two parts, a client and a server, implemented by the TIMOP client and server
processes.

TIMOP server: The server offers just one operation. With this operation, clients can learn the span
of time it takes the server to calculate the factorial of a random number specified by the client.

TIMOP client: The client spawns a number of threads, which make parallel RPC service calls to
designated servers. The client prints out the name, invocation order, and time spans reported by the
servers, and the random numbers it asked the servers to take the factorial of. It also prints out a total
time span that encompasses all the job events at the servers and the sum of the random numbers.

Only UDP is utilized as a least common denominator transport provider. Authentication and
integrity-secure RPC are used to make sure the communicated data is correct, and some authorization
(named-based, not ACLs) is used. Integrity of the data transferred between the Timop client and server is
verified by setting the protect_level parameter of the rpc_binding_set_auth_info() call to

276 DCE Application Development Guide: Introduction and Style

rpc_c_protect_level_pkt_integ. The Directory Service is used to identify the servers and to mediate the
RPC binding between client and server.

All time calculations are done in UTC with TDF = @ (the Z or Zulu or UTC reference time zone,
corresponding to the classical UT GMT time zone). This is not the local wall clock time, because the client
and server may be in different time zones.

Note: The server and client clocks are all different physical clocks, but they are synchronized by DTS.

TIMOP and Security

Because TIMOP uses the Security Service, the TIMOP clients and servers must run as security principals.
However, this tutorial example makes minimal use of security. With the code as supplied, the TIMOP client
program is run as a principal named /.../your_cell/tclient, and the TIMOP server program is run as a
principal named /.../your_cell/tserver. These names are hardcoded in the TIMOP auxiliary header file,
and should be changed to suit your environment prior to compiling the example. For example, both
tclient and tserver could be the person running this program.

The default login contexts used for running TIMOP are tclient and tserver. That is, when you run the
TIMOP server program and the TIMOP client program, log in to DCE as the principal tserver and tclient,
respectively. Also, since the TIMOP server is run with the key of tserver, you need to install this key into
the key file, /tmp/tkeyfile, to which you should have exclusive read and write permission. To do this, see
the comments in the TIMOP server header file.

Note that only a simple form of authorization is used, based on principal names, and not ACLs. It is your
responsibility to implement an ACL manager using ACL-based authorization, if you require. (Default
source code for ACL management is supplied with the DCE, but to have used it in this example would
make the code unwieldy.)

 Source Files

The TIMOP program is built from the following source (either HFS or PDS files):

Table 13. The Timop Source Files (HFS and PDS Names)

HFS File Name PDS Name Description

Makefile N/A The makefile (applies to the z/OS UNIX
System Services shell environment)

timop.idl USERPRFX.IDL(TIMOP) The IDL file

timop.acf USERPRFX.ACF(TIMOP) The ACF file

timop_aux.h USERPRFX.H(TIMOPAX) The auxiliary header file

timop_client.h USERPRFX.H(TIMOPCL) The client header file

timop_client.c USERPRFX.C(TIMOPCL) The client program

timop_server.h USERPRFX.H(TIMOPSR) The server header file

timop_server.c USERPRFX.C(TIMOPSR) The server program

timop_manager.c USERPRFX.C(TIMOPMR) The manager routines

timop_refmon.c USERPRFX.C(TIMOPRF) The server reference monitor.

 Appendix B. Another Sample DCE Application: TIMOP 277

The HFS files are located in the /usr/lpp/dce/examples/timop directory. If you cannot find the Timop
source files in this directory, consult your DCE administrator to find where they are located on your
system.

If you want to run the Timop examples from the PDS files, you must allocate the PDS files listed above
and copy the source code from the HFS files into the PDS using the TSO/E OGET command.

Note that you need to change the HFS names of the source files to the shorter PDS names listed in
Table 13 on page 277. Also you will have to change the names of the timop_aux.h, timop_server.h
and timop_client.h files in the Timop server and client source to the PDS names listed in Table 13 on
page 277.

Manager is generic RPC terminology for the part of the server that actually handles the remote operations.
In the usual practice as illustrated here, the server program contains the generic routines that start up and
initialize the server, and the manager portion contains the application-specific routines that implement the
remote operations, among other things.

 Building TIMOP

Prior to building the TIMOP server and client, you need to do the following:

1. Run the IDL compiler with the no_mepv, _no_cpp and _keep c_source options.

2. Define the TIMOP client and TIMOP server principal names to suit your environment in the TIMOP
auxiliary header file.

In the Shell: Assuming you use HFS files, to build TIMOP in the shell, adjust Makefile to suit your
environment, then issue the following command (you'll have to do this separately for every machine
architecture you want to use):

make -f Makefile

Figure 135 on page 279 shows a sample makefile to build timop. This makefile assumes you are using
HFS files.

278 DCE Application Development Guide: Introduction and Style

IF = timop

IDL = /bin/idl
IDL_FLAGS = -no_cpp -no_mepv -keep c_source
CFLAGS = -DMVS -D_DCE_THREADS -D_OPEN_SYS -W@,DLL
LIBS = -l dce /usr/lib/EUVPDLL.x

FROMIDL = $(IF).h $(IF)_cstub.c $(IF)_sstub.c
COBJ = $(IF)_client.o $(IF)_cstub.o
SOBJ = $(IF)_server.o $(IF)_sstub.o $(IF)_manager.o $(IF)_refmon.o

default: $(IF)_client $(IF)_server
$(IF)_client: $(COBJ)
 c89 -o $(IF)_client $(COBJ) $(LIBS)
$(IF)_server: $(SOBJ)
 c89 -o $(IF)_server $(SOBJ) $(LIBS)

$(COBJ): $(IF).h
$(SOBJ): $(IF).h

$(FROMIDL): $(IDL) $(IF).idl
 $(IDL) $(IF).idl $(IDL_FLAGS)

clean:
 rm -f $(FROMIDL) ".o

Figure 135. Sample makefile for Building timop

In Batch: See “Writing a Simple Distributed Application on z/OS” on page 29 for examples to compile
and link-edit DCE applications in batch.

 Installing TIMOP

To run timop, you must first install timop_client and timop_server on the machines you want to use by
performing the following steps. (It is assumed you perform these steps in the z/OS UNIX System Services
shell.)

1. Add the client and server principals to the Security registry.
2. Create a keyfile to be used by the server.
3. Create a CDS namespace entry for the server to export its binding information to, and for the clients to

import its binding information from.
4. Set up the correct permissions on the namespace entry to allow the server to use it, that is, to write to

it, correctly.

Assuming the server’s principal name is tserver and the client’s principal name is tclient, as specified in
the timop_aux.h file, perform the following steps:

1. Log in to DCE as the cell administrator.

dce_login cell_admin -dce-

You must first log in as the cell administrator to run the following registry operations. Note that the
password at your site may be different from that given in the above example. For more information
about dce_login, see z/OS DCE User's Guide.

2. Add the server and client principals to the registry, and set up the server’s keyfile.

 Appendix B. Another Sample DCE Application: TIMOP 279

rgy_edit
Current site is: registry server at /.../your_cell/subsys/dce/sec/master

rgy_edit=> domain principal
Domain changed to: principal
rgy_edit=> add tserver
rgy_edit=> add tclient
rgy_edit=> domain account
Domain changed to: account
rgy_edit=> add tserver -g server-rpc-group -o none -pw tserver_pw -mp -dce-
rgy_edit=> add tclient -g server-rpc-group -o none -pw tclient_pw -mp -dce-
rgy_edit=> ktadd -p tserver -password tserver_pw -f /tmp/tkeyfile
rgy_edit=> quit
bye.

Note that tserver_pw and tclient_pw in the above examples are the passwords you assign to the
server and the client respectively. You can substitute any other values you wish, but be sure to
remember what the values are as you will need to log in to DCE before running the client and server
programs.

Note: You can also use dcecp to set up the server's keyfile.

For additional information on using rgy_edit and dcecp, see z/OS DCE Administration Guide.

The name of the server’s keyfile, /tmp/tkeyfile, is specified by the value of the KEYFILE constant in
the timop_server.h file; the name you give to the ktadd sub-command must be identical to the value
of this constant. Although the timop server does not maintain its own identity, that is, it runs as the
principal identity that invoked it, the keyfile is needed for the rpc_server_register_auth_info() call.
This call sets up the authentication parameters for clients contacting the timop server.

3. Create the CDS entry that will be used to hold the server’s binding information.

rpccp add entry /.:/t_entry

You can substitute any legitimate CDS name in place of t_entry. For further information about
rgy_edit see z/OS DCE Administration Guide.

4. Set up the ACL on the entry to allow access to the server.

acl_edit -e /.:/t_entry -m user:tserver:rwdtc

Note that tserver is the principal name used in the previous steps, and must be identical to the value
of the SERVER_PRINC_NAME constant in timop_aux.h. For further information about acl_edit, see
z/OS DCE User's Guide.

5. Enable the tserver principal to write to the RPC daemon.

acl_edit -e /.:/hosts/<your_host>/rpc-daemon -m user:tserver rwdtc

You have now installed timop.

 Running TIMOP

To run timop, you must first start the server, and then invoke one or more clients to perform the timop
operation. This is done as follows.

280 DCE Application Development Guide: Introduction and Style

In the Shell: On the machine on which you want to run the server, enter the following:

dce_login tserver tserver_pw

timop_server /.:/t_entry/timop

You should do this either in background (&), or in a different window from the one in which you intend to
run the client, or on a separate terminal.

Note that you have to log in as the timop server principal before you can successfully run timop_server.
This is because timop_server assumes that it has been invoked under the correct identity, and does not
explicitly acquire its own login context and identity. This has been left out of timop_server.c in order to
keep timop to the essentials.

In the above example, /.:/t_entry/timop is the name in the namespace that you want this server to have.
That is, the name of the CDS entry to which the server exports, and by means of which it is known to
clients. This entry is set up when you run the rpccp add entry command described earlier. It can have
any name of your choice.

After you have invoked the server, wait until you see the following message:

Server /.:/t_entry/timop ready.

Now you can invoke the client (either in the same window, if you ran the server in the background, or in a
different window). To start up your client, enter the following:

dce_login tclient tclient_pw

timop_client /.:/t_entry/timop

Note again that you must log in as the timop client principal before invoking timop_client.

On a successful start up of the timop program, timop_client will print out results continuously, until you
stop it (see “Stopping TIMOP” on page 282).

On multiple machines in the same cell, you can try the following:

timop_server /.:/t_entry # on machine A

timop_server /.:/x_entry # on machine B

timop_server /.:/y_entry # on machine C

timop_client /.:/t_entry /.:/x_entry /.:/y_entry # on machine D

timop_client /.:/y_entry /.:/x_entry /.:/t_entry # on machine E

Note that you need to set up x_entry and y_entry in the namespace first. You can do this as follows:

dce_login cell_admin -dce-

rpccp add entry /.:/x_entry

rpccp add entry /.:/y_entry

acl_edit -e /.:/x_entry -m user:tserver:rwdtc

acl_edit -e /.:/y_entry -m user:tserver:rwdtc

Note that if the servers run on machines that are not in the same cell, you must use fully qualified names
beginning with /..., and not /.:/ as shown above.

Prior to running the TIMOP client program, log in to DCE as the principal tclient.

 Appendix B. Another Sample DCE Application: TIMOP 281

In Batch: To start up the TIMOP server, use the following example JCL.

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE TIMOP SERVER
//"
//"""
//TIMOPSR EXEC PGM=TIMOPSR,PARM='POSIX(ON)/ /.:/t_entry'
//STEPLIB DD DSN=USERPRFX.TIMOP.LOAD,DISP=SHR

Figure 136. Example JCL to Start the TIMOP Server

After you have logged into DCE as principal tclient, start up the TIMOP client using the example JCL
contained in Figure 136.

//JOBNAME JOB (ACCOUNT),...your_job_parameters
//"""
//"
//" JCL TO STARTUP THE TIMOP CLIENT
//"
//"""
//TIMOPCL EXEC PGM=TIMOPCL,PARM='POSIX(ON)/ /.:/t_entry'
//STEPLIB DD DSN=USERPRFX.TIMOP.LOAD,DISP=SHR

Figure 137. Example JCL to Start the TIMOP Client

 Stopping TIMOP

In the Shell, you must kill clients and servers using the kill command or <CNTL+C> C. In TSO/E, you
can CANCEL or PURGE the TIMOP server and client from the SDSF menu.

This leaves server binding information in the endpoint map and namespace, which is normal for persistent
servers. The information can always be removed using the CDS Control Program (CDSCP) later on, if
necessary.

 Further Exercises

After running TIMOP, a good exercise to increase your understanding is to modify TIMOP in various ways,
and start writing your own applications. Some suggestions include the following:

� Intentionally introduce some threads race conditions to experiment with the meaning of reentrancy.
Then, fix the asctime() bug intentionally left in the code.

� Parallelize the client in a different way by using pthread_exit() and pthread_join() instead of
pthread_cond_signal() and pthread_cond_wait().

� Receive just one reply from one server, canceling the other outstanding jobs when the first reply
arrives.

� Handle server returns from within the listen loop. You have to clean the server binding information
from the endpoint map and namespace. You may want to experiment with the
pthread_signal_to_cancel_np() library routine and the exception-handling interface (the TRY,
FINALLY, and ENDTRY constructs). For more information, see Chapter 4, “Threads” on page 149.

� Create a namespace service group, instead of a collection of individually named server instances.

282 DCE Application Development Guide: Introduction and Style

� Create Version 1.1 of TIMOP, that contains an additional operation to implement an additive version of
the multiplicative factorial job (‘n += i’ instead of ‘n *= i’).

� Use context handles and some DTS primitives to return per-client cumulative job times.

� Create a server that supports two managers, each offering a separate implementation of the factorial
operation: one implementation remaining the same as the present version, while the new one
(accessed by a new object UUID) computes the factorial in decreasing order.

� Working with some other users, make the clients and servers run under several principal identities.
Have your security administrator create some extra identities for you to experiment with. The extra
identities are also useful in the following exercise.

� Implement an ACL manager for the TIMOP service, and add ACL entries for several principals and
groups, and test the ACL manager by running the clients under various principal identities.

� Replace the no-op factorial operation with some operation or operations that would be really useful in
your environment. This is the first step in creating your own full-blown DCE application.

 Appendix B. Another Sample DCE Application: TIMOP 283

The TIMOP Program: A Sample DCE Application

The following subsections present the source code for the TIMOP application.

The TIMOP IDL Source File

/"
"" timop.idl
""
"" IDL interface specification for remote time operations.
"/

/" We need explicit handles in timop because our client has multiple (actually,
multi-threaded) RPCs bound to multiple explicitly-specified servers. "/

[uuid(@cf616d8-b858-11c9-8@78-@26@8c@a@3a7),
 version(1.@)]
interface timop
{

/" DTS timestamps are already in a universal format,
so are opaque to (the presentation layer of) the RPC
(16 = sizeof(utc_t)). "/

const small SIZEOF_TIMESTAMP = 16;
 typedef byte timestamp_t[SIZEOF_TIMESTAMP];

/" Failure value for remote status indications. "/
const long TIMOP_ERR = -1;

/" Get the time span to do a job (random factorial). "/
 [idempotent]
 void timop_getspan(
 [in] handle_t handle,
 [in] long rand,
 [out] timestamp_t timestamp,
 [out] long "status_p,
 [in,out] error_status_t "remote_status_p);
}

Figure 138. Interface Definition File for TIMOP

284 DCE Application Development Guide: Introduction and Style

The TIMOP ACF Source File

/"
"" timop.acf
""
"" Attribute configuration file for timop interface.
"/

/" Do all marshalling out-of-line. "/
[out_of_line]
interface timop
{

/" Declare remote_status_p to be a comm_status and
fault_status parameter. "/

 timop_getspan(
 [comm_status,fault_status] remote_status_p);
}

Figure 139. Attribute Configuration File for TIMOP

The TIMOP Auxiliary Header File

/"
"" timop_aux.h
""
"" Auxiliary info for timop example.
"" There are other ways to do these things, but we're just
"" illustrating the basics here.
"/

/" Principal names for this sample application.
Change them to suit your environment. "/

#define CLIENT_PRINC_NAME (unsigned_char_t ")"/.../mycell/tclient"
#define SERVER_PRINC_NAME (unsigned_char_t ")"/.../mycell/tserver"

/" Well-known object uuid for this sample application. "/
#define OBJ_UUID (unsigned_char_t ")"2541af56-43a2-11ca-a9f5-@26@8c@ffe49"

Figure 140. Auxiliary information for TIMOP

 Appendix B. Another Sample DCE Application: TIMOP 285

The TIMOP Client Header File

/"
"" timop_client.h
""
"" Client header file for timop interface.
"/

#define MAX_SERVERS 1@ /" single-digit server_num's, @...9 "/
#define CLIENT_NUM -1 /" not equal to any server_num "/
#define MAX_RANDOM (1@"1@@@"1@@@) /" big, to observe threads in action "/
#define DO_WORK_OK @ /" pass "/
#define DO_WORK_ERR 1 /" fail "/

/" Package up do_work() args in a struct, because
pthreads start routines take only one argument. "/

typedef struct work_arg {
int server_num; /" as ordered in arg list "/
unsigned_char_t "server_name; /" as named in arg list "/

 rpc_binding_handle_t bind_handle; /" binding handle to server "/
idl_long_int rand; /" input to the rpc call "/
int status; /" returned from do_work() "/

} work_arg_t;

/" Prototypes for client. "/
int main(int _1, char "_2[]);
void do_work(work_arg_t "_1);
void print_report(unsigned_char_t "_1, int _2, utc_t "_3, long _4);

Figure 141. Client Header File for TIMOP

286 DCE Application Development Guide: Introduction and Style

The TIMOP Client Source File

/"
"" timop_client.c
""
"" Client program for timop interface.
"/
#pragma runopts(stack(12K,4K,ANY,KEEP))

#include <errno.h>
#include <stdio.h>
#include <locale.h>
#include <dce/rpc.h>
#include <pthread.h>
#include <time.h>
#include <dce/utc.h>
#include "timop.h"
#include "timop_aux.h"
#include "timop_client.h"

long Rand; /" sum of random numbers "/
int Workers; /" number of active worker threads "/
pthread_mutex_t Work_mutex; /" guard access to Workers, Rand "/
pthread_cond_t Work_cond; /" condition variable for Workers==@ "/

/"
 " main()
 "
 " Get started, and main loop.
 "/

int main(int argc, char "argv[])
{

int server_num, nservers, ret;
 work_arg_t work_arg[MAX_SERVERS];
 unsigned_char_t "server_name[MAX_SERVERS],
 "string_binding, "protseq;
 rpc_binding_handle_t bind_handle[MAX_SERVERS];
 unsigned32 status;

utc_t start_utc, stop_utc, span_utc;
 struct tm time_tm;
 uuid_t obj_uuid;
 rpc_ns_handle_t import_context;
 pthread_t thread_id[MAX_SERVERS];

 setlocale(LC_ALL, "");

/" Check usage and initialize. "/
if (argc < 2 || (nservers = argc-1) > MAX_SERVERS) {

 fprintf(stderr,
"Usage: %s server_name ...(up to %d server_name's)...\n",

 argv[@], MAX_SERVERS);
 fflush(stderr);
 exit(1);
 }

for (server_num = @; server_num < nservers; server_num += 1) {
server_name[server_num] = (unsigned_char_t ")argv[1+server_num];

 }

Figure 142 (Part 1 of 8). Client Program for TIMOP Interface

 Appendix B. Another Sample DCE Application: TIMOP 287

/" Initialize object uuid. "/
uuid_from_string(OBJ_UUID, &obj_uuid, &status);
if (status != uuid_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Import binding info from namespace. "/
for (server_num = @; server_num < nservers; server_num += 1) {

/" Begin the binding import loop. "/
 rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,
 server_name[server_num], timop_v1_@_c_ifspec,

&obj_uuid, &import_context, &status);
if (status != rpc_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Import bindings one at a time. "/
while (1) {

 rpc_ns_binding_import_next(import_context,
 &bind_handle[server_num], &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__,

 __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Select, say, the first binding over UDP. "/
 rpc_binding_to_string_binding(bind_handle[server_num],
 &string_binding, &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__,

 __LINE__);
 fflush(stderr);
 exit(1);
 }
 rpc_string_binding_parse(string_binding, NULL,

&protseq, NULL, NULL, NULL, &status);
if (status != rpc_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__,
 __LINE__);
 fflush(stderr);
 exit(1);
 }
 rpc_string_free(&string_binding, &status);

ret= strcmp(protseq, "ncadg_ip_udp");
 rpc_string_free(&protseq, &status);

if (ret == @) {
 break;
 }
 }

Figure 142 (Part 2 of 8). Client Program for TIMOP Interface

288 DCE Application Development Guide: Introduction and Style

/" End the binding import loop. "/
 rpc_ns_binding_import_done(&import_context, &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);

 fflush(stderr);
 exit(1);
 }
 }

/" Annotate binding handles for security. "/
for (server_num = @; server_num < nservers; server_num += 1) {

 rpc_binding_set_auth_info(bind_handle[server_num],
 SERVER_PRINC_NAME, rpc_c_protect_level_pkt_integ,

rpc_c_authn_dce_secret, NULL /"default login context"/,
 rpc_c_authz_name, &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);

 fflush(stderr);
 exit(1);
 }
 }

/" Initialize mutex and condition variable. "/
ret = pthread_mutex_init(&Work_mutex, pthread_mutexattr_default);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

ret = pthread_cond_init(&Work_cond, pthread_condattr_default);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Initialize random number generator. "/
 srand(time(NULL));

/" Initialize work args that are constant throughout main loop. "/
for (server_num = @; server_num < nservers; server_num += 1) {

work_arg[server_num].server_num = server_num;
work_arg[server_num].server_name = server_name[server_num];
work_arg[server_num].bind_handle = bind_handle[server_num];

 }

/" Print out the year and date, just once. "/
ret = utc_gettime(&start_utc);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

ret = utc_gmtime(&time_tm, NULL, NULL, NULL, &start_utc);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

fprintf(stdout, "\n%24.24s UTC (Z time zone)\n\n", asctime(&time_tm));
 fflush(stdout);

Figure 142 (Part 3 of 8). Client Program for TIMOP Interface

 Appendix B. Another Sample DCE Application: TIMOP 289

/" Main loop -- never exits -- interrupt to quit. "/
while (1) {

/" Per-loop initialization. We're single-threaded here, so
locks and reentrant random number generator unnecessary. "/

Rand = @;
Workers = nservers;
for (server_num = @; server_num < nservers; server_num += 1) {

work_arg[server_num].rand = rand()%MAX_RANDOM;
 }

/" Get client’s start timestamp. "/
ret = utc_gettime(&start_utc);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Spawn a worker thread for each server. "/
for (server_num = @; server_num < nservers; server_num += 1) {

ret = pthread_create(&thread_id[server_num],
pthread_attr_default, (void "(")())do_work,

 (void ")&work_arg[server_num]);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__,
 __LINE__);
 fflush(stderr);
 exit(1);
 }
 }

/" Reap the worker threads; pthread_cond_wait() semantics
requires it to be coded this way. "/

ret = pthread_mutex_lock(&Work_mutex);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

while (Workers != @) {
ret = pthread_cond_wait(&Work_cond, &Work_mutex);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__,
 __LINE__);
 fflush(stderr);
 exit(1);
 }
 }

ret = pthread_mutex_unlock(&Work_mutex);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

Figure 142 (Part 4 of 8). Client Program for TIMOP Interface

290 DCE Application Development Guide: Introduction and Style

/" Reclaim storage. "/
for (server_num=@; server_num < nservers; server_num += 1) {

ret = pthread_detach(&thread_id[server_num]);
if (ret == -1) {

fprintf (stderr, "Fault: %s:%d\n",__FILE__,
 __LINE__);
 fflush(stderr);
 fflush(stderr);
 exit(1);
 }
 }

/" Any failures? "/
for (server_num = @; server_num < nservers; server_num += 1) {

if (work_arg[server_num].status != DO_WORK_OK) {
 exit(1);
 }
 }

/" Get client’s stop timestamp. "/
ret = utc_gettime(&stop_utc);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Calculate the span of client’s start and stop timestamps. "/
ret = utc_spantime(&span_utc, &start_utc, &stop_utc);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Print total results. "/
print_report((unsigned_char_t ")"(client)", CLIENT_NUM,

 &span_utc, Rand);
 }

/" Not reached. "/
}
/"
 " do_work()
 "
 " Do the work. This is done in parallel threads, so we want it
 " (and the subroutine print_report() it calls) to be reentrant.
 "/

void
do_work(
 work_arg_t "work_arg_p)
{

int server_num, "status_p, ret;
 unsigned_char_t "server_name;
 rpc_binding_handle_t bind_handle;
 idl_long_int rand, status;

error_status_t remote_status = rpc_s_ok;
 timestamp_t timestamp;

Figure 142 (Part 5 of 8). Client Program for TIMOP Interface

 Appendix B. Another Sample DCE Application: TIMOP 291

/" Unpackage the args into local variables. "/
server_num = work_arg_p->server_num;
server_name = work_arg_p->server_name;
bind_handle = work_arg_p->bind_handle;
rand = work_arg_p->rand;
status_p = &work_arg_p->status;

/" Do the RPC! "/
timop_getspan(bind_handle, rand, timestamp, &status, &remote_status);
if (remote_status != rpc_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
"status_p = DO_WORK_ERR;

 fflush(stderr);
 pthread_exit(NULL);

/" Not reached. "/
 }

if (status != rand) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
"status_p = DO_WORK_ERR;

 fflush(stderr);
 pthread_exit(NULL);

/" Not reached. "/
 }

/" Print report. Not a critical section here because print_report()
is supposed to be implemented to be reentrant. "/

print_report(server_name, server_num, (utc_t ")timestamp, rand);

/" Update Rand and decrement Workers. As implemented, it is a
critical section, so must be locked. "/

ret = pthread_mutex_lock(&Work_mutex);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

Workers -= 1;
if (Workers == @) {

/" Last worker signals main thread. "/
ret = pthread_cond_signal(&Work_cond);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }
 }

Rand += rand;
ret = pthread_mutex_unlock(&Work_mutex);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Done. "/
"status_p = DO_WORK_OK;

 pthread_exit(NULL);
/" Not reached. "/

}

Figure 142 (Part 6 of 8). Client Program for TIMOP Interface

292 DCE Application Development Guide: Introduction and Style

/"
 " print_report()
 "
 " Print DTS timestamp interval, to millisecond granularity.
 " Implemented this way so it is reentrant (assuming all the underlying
 " OS subroutines it calls are reentrant).
 " This kind of timestamp manipulation is always messy -- see the
 " manual for the formats of structures and print-strings we use.
 "/

int
print_report(
 unsigned_char_t "server_name,
 int server_num,
 utc_t "utc_p,
 long rand)
{
#define LINE_LEN 78
#define COL1 @
#define COL2 44
#define COL3a 47
#define COL3b 6@
#define COL4 7@
 char asctime_buf[26], ascinacc_buf[26],
 time_ns_buf[1@], inacc_ns_buf[1@],
 report[LINE_LEN+3];
 int inacc_sec, ret;
 long time_ns, inacc_ns;
 struct tm time_tm, inacc_tm;

/" Print server_name into report. Pad or truncate as necessary. "/

/" Print server_num into report. "/
if (server_num != CLIENT_NUM) {

 sprintf(report+COL2, "%1.1d ", server_num);
} else {

 sprintf(report+COL2, "%1.1s ", """);
 }

/" Format utc_p and print it into report. "/
ret = utc_gmtime(&time_tm, &time_ns, &inacc_tm, &inacc_ns, utc_p);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

memcpy(asctime_buf, asctime(&time_tm), 26); /" reentrancy bug! "/
memcpy(ascinacc_buf, asctime(&inacc_tm), 26); /" reentrancy bug! "/
sprintf(time_ns_buf, "%9.9d", time_ns);
sprintf(inacc_ns_buf, "%9.9d", inacc_ns);
inacc_sec = inacc_tm.tm_yday"24"6@"6@ + inacc_tm.tm_hour"6@"6@ +

inacc_tm.tm_min"6@ + inacc_tm.tm_sec;
sprintf(report+COL3a, "%8.8s.%3.3sI", asctime_buf+11,

 time_ns_buf);

Figure 142 (Part 7 of 8). Client Program for TIMOP Interface

 Appendix B. Another Sample DCE Application: TIMOP 293

if (inacc_tm.tm_year != -1) {
 sprintf(report+COL3b, "%4.4d.%3.3s ", inacc_sec,
 inacc_ns_buf);

} else {
 sprintf(report+COL3b, "%8.8s ", "infinity");
 }

/" Print rand into report. "/
if (server_num != CLIENT_NUM) {

sprintf(report+COL4, "%8d\n", rand);
} else {

sprintf(report+COL4, "%8d\n\n", rand);
 }

/" Output report. "/
fprintf(stdout, "%s", report);

 fflush(stdout);
 return;
}

Figure 142 (Part 8 of 8). Client Program for TIMOP Interface

294 DCE Application Development Guide: Introduction and Style

The TIMOP Server Header File

/"
"" timop_server.h
""
"" Server header file for timop interface.
"/

#define NUM_OBJS 1 /" num of objs supported "/
#define MAX_CONC_CALLS_PROTSEQ 5 /" max conc calls per protseq "/
#define MAX_CONC_CALLS_TOTAL 1@ /" max conc calls total "/

/" Success/failure for remote procedures. "/
#define GETSPAN_OK @ /" pass "/
#define GETSPAN_ERR 1 /" fail "/

/" Defines for access control. "/
#define GETSPAN_OP 1 /" requested operation "/
#define GRANT_ACCESS @ /" reference monitor success "/
#define DENY_ACCESS 1 /" reference monitor failure "/
#define IS_AUTHORIZED @ /" authorization success "/
#define NOT_AUTHORIZED 1 /" authorization failure "/

/" Server key table for this example. Change name of keyfile to
suit your environment, and populate it with the rgyedit subcommand
"ktadd -p tserver -pw tserver -f /tmp/tkeyfile". "/

#define KEYFILE "/tmp/tkeyfile"
#define KEYTAB "FILE:" ## KEYFILE

/" Prototypes for server. "/
int main(int _1, char "_2[]);
void getspan_ep(rpc_binding_handle_t _1, idl_long_int _2, timestamp_t _3,

idl_long_int "_4, error_status_t "_5);
int do_getspan(idl_long_int _1, timestamp_t _2);
int ref_mon(rpc_binding_handle_t _1, int _2);
int is_authorized(unsigned_char_t "_1, int _2);

 Appendix B. Another Sample DCE Application: TIMOP 295

The TIMOP Server Source File

/"
"" timop_server.c
""
"" Server program for timop interface.
"/
#pragma runopts(stack(12K,4K,ANY,KEEP))

#include <stdio.h>
#include <locale.h>
#include <dce/rpc.h>
#include "timop.h"
#include "timop_aux.h"
#include "timop_server.h"

/" Declare manager EPV. This EPV could be bulk-initialized here,
but we do prefer to do it one operation at a time in main(). "/

timop_v1_@_epv_t manager_epv;

/"
 " main()
 "
 " Get started -- set up server the way we want it, and call listen loop.
 "/

int main(int argc, char "argv[])
{
 unsigned_char_t "server_name;
 rpc_binding_vector_t "bind_vector_p;
 unsigned32 status;
 int i;
 uuid_t type_uuid, obj_uuid;
 struct {
 unsigned32 count;
 uuid_t "uuid[NUM_OBJS];

} obj_uuid_vec = {NUM_OBJS, {&obj_uuid}};

 setlocale(LC_ALL, "");

/" Check usage and initialize. "/
if (argc != 2) {

fprintf(stderr, "Usage: %s namespace_server_name\n", argv[@]);
 fflush(stderr);
 exit(1);
 }

server_name = (unsigned_char_t ")argv[1];

/" Initialize manager EPV (just one entry point in this example). "/
manager_epv.timop_getspan = getspan_ep;

/" Initialize object uuid (just one in this example). "/
uuid_from_string(OBJ_UUID, &obj_uuid, &status);
if (status != uuid_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

Figure 143 (Part 1 of 3). Server Program for TIMOP Interface

296 DCE Application Development Guide: Introduction and Style

/" Initialize type uuid (just one in this example). "/
 uuid_create(&type_uuid, &status);

if (status != uuid_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);

 fflush(stderr);
 exit(1);
 }

/" Register object/type uuid associations with rpc runtime. "/
rpc_object_set_type(&obj_uuid, &type_uuid, &status);
if (status != rpc_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Register interface/type_uuid/epv associations with rpc runtime. "/
 rpc_server_register_if(timop_v1_@_s_ifspec, &type_uuid,
 (rpc_mgr_epv_t)&manager_epv, &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);

 fflush(stderr);
 exit(1);
 }

/" Tell rpc runtime we want to use all supported protocol sequences. "/
 rpc_server_use_all_protseqs(MAX_CONC_CALLS_PROTSEQ, &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);

 fflush(stderr);
 exit(1);
 }

/" Ask the runtime which binding handle(s) it’s going to let us use. "/
 rpc_server_inq_bindings(&bind_vector_p, &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);

 fflush(stderr);
 exit(1);
 }

/" Register authentication info with rpc runtime. "/
 rpc_server_register_auth_info(SERVER_PRINC_NAME,

rpc_c_authn_dce_secret, NULL /"default key retrieval function"/,
KEYTAB /"server key table for this example"/, &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);

 fflush(stderr);
 exit(1);
 }

/" Establish server’s login context(s), if necessary.
In this example we just use the default login context,
so we do NOTHING here. "/

Figure 143 (Part 2 of 3). Server Program for TIMOP Interface

 Appendix B. Another Sample DCE Application: TIMOP 297

/" Decide what to do upon server termination. It would be prudent
to handle signals and decide what to do if the listen loop returns
(e.g., clean exported information out of endpoint map and namespace,

something that is not usually done for a persistent server),
but since this is just an example we don't do those things here. "/

/" Register binding information with endpoint map. "/
 rpc_ep_register(timop_v1_@_s_ifspec, bind_vector_p,
 (uuid_vector_t ")&obj_uuid_vec,

(unsigned_char_t ")"timop server, version 1.@", &status);
if (status != rpc_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Export binding info to the namespace. "/
 rpc_ns_binding_export(rpc_c_ns_syntax_dce, server_name,
 timop_v1_@_s_ifspec, bind_vector_p,

(uuid_vector_t ")&obj_uuid_vec, &status);
if (status != rpc_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 fflush(stderr);
 exit(1);
 }

/" Listen for service requests (semi-infinite loop). "/
fprintf(stdout, "Server %s ready.\n", server_name);

 fflush(stdout);
 rpc_server_listen(MAX_CONC_CALLS_TOTAL, &status);

if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);

 fflush(stderr);
 exit (1);
 }

/" Returned from listen loop. We haven't arranged for this. "/
fprintf(stderr, "FAULT: %s:%d\n",__FILE__, __LINE__);

 fflush(stderr);
 exit (1);

}

Figure 143 (Part 3 of 3). Server Program for TIMOP Interface

298 DCE Application Development Guide: Introduction and Style

The TIMOP Manager Source File

/"
"" timop_manager.c
""
"" Manager routines for timop interface.
"/

#include <stdio.h>
#include <dce/utc.h>
#include "timop.h"
#include "timop_aux.h"
#include "timop_server.h"

/"
 " getspan_ep()
 "
 " Entry point for timop_getspan() operation.
 " Note it is reentrant, so we can have a multi-threaded server.
 "/

void
getspan_ep(
 rpc_binding_handle_t bind_handle,
 idl_long_int rand,
 timestamp_t timestamp,
 idl_long_int "status_p,
 error_status_t "remote_status_p)
{
 int ret;

/" Call reference monitor, to make authorization decision. "/
ret = ref_mon(bind_handle, GETSPAN_OP);
if (ret == DENY_ACCESS) {

"status_p = TIMOP_ERR;
 return;
 }

/" Service the request, i.e., do the actual remote procedure. "/
ret = do_getspan(rand, timestamp);
if (ret == GETSPAN_ERR) {

"status_p = TIMOP_ERR;
 return;
 }

/" Return the input random number as a status value (!= TIMOP_ERR). "/
"status_p = rand;
/" Return all results to client, and resume listen loop. "/

 return;

Figure 144 (Part 1 of 2). Manager Routines for TIMOP Interface

 Appendix B. Another Sample DCE Application: TIMOP 299

}
/"
 " do_getspan()
 "
 " Do the actual remote procedure.
 "/

int
do_getspan(
 idl_long_int rand,
 timestamp_t timestamp)
{
 long i;
 volatile long n;
 int ret;
 utc_t start_utc, stop_utc;

/" Get server’s start timestamp. "/
ret = utc_gettime(&start_utc);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(GETSPAN_ERR);
 }

/" Do service (here a random factorial, but could be anything). "/
for (n = i = 1; i <= rand; i += 1) {

n "= i; /" Burn cpu -- use your imagination. "/
 }

/" Get server’s stop timestamp. "/
ret = utc_gettime(&stop_utc);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(GETSPAN_ERR);
 }

/" Calculate the span of server’s start and stop timestamps. "/
ret = utc_spantime((utc_t ")timestamp, &start_utc, &stop_utc);
if (ret == -1) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(GETSPAN_ERR);
 }

/" Success. "/
 return(GETSPAN_OK);
}

Figure 144 (Part 2 of 2). Manager Routines for TIMOP Interface

300 DCE Application Development Guide: Introduction and Style

The TIMOP Reference Monitor Source File

/"
"" timop_refmon.c
""
"" Reference monitor for timop example.
"/

#include <stdio.h>
#include "timop_aux.h"
#include "timop.h"
#include "timop_server.h"

/"
 " ref_mon()
 "
 " Reference monitor for timop.
 " It checks generalities, then calls is_authorized() to check specifics.
 "/

int
ref_mon(
 rpc_binding_handle_t bind_handle,
 int requested_op)
{
 int ret;
 rpc_authz_handle_t privs;
 unsigned_char_t "client_princ_name, "server_princ_name;

unsigned32 protect_level, authn_svc, authz_svc,
 status;

/" Get client auth info. "/
rpc_binding_inq_auth_client(bind_handle, &privs, &server_princ_name,

&protect_level, &authn_svc, &authz_svc, &status);
if (status != rpc_s_ok) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(DENY_ACCESS);
 }

/" Check if selected authn service is acceptable to us. "/
if (authn_svc != rpc_c_authn_dce_secret) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(DENY_ACCESS);
 }

/" Check if selected protection level is acceptable to us. "/
if (protect_level != rpc_c_protect_level_pkt_integ
&& protect_level != rpc_c_protect_level_pkt_privacy) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(DENY_ACCESS);
 }

/" Check if selected authz service is acceptable to us. "/
if (authz_svc != rpc_c_authz_name) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(DENY_ACCESS);

Figure 145 (Part 1 of 2). Reference Monitor for TIMOP Example

 Appendix B. Another Sample DCE Application: TIMOP 301

 }
/" If rpc_c_authz_dce were being used instead of rpc_c_authz_name,

privs would be a PAC (sec_id_pac_t "), not a name as it is here. "/
client_princ_name = (unsigned_char_t ")privs;

/" Check if selected server principal name is supported. "/
if (strcmp(server_princ_name, SERVER_PRINC_NAME) != @) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(DENY_ACCESS);
 }

/" Now that things seem generally OK, check the specifics. "/
ret = is_authorized(client_princ_name, requested_op);
if (ret == NOT_AUTHORIZED) {

fprintf(stderr, "FAULT: %s:%d\n", __FILE__, __LINE__);
 return(DENY_ACCESS);
 }

/" Cleared all the authorization hurdles -- grant access. "/
 return(GRANT_ACCESS);
}
/"
 " is_authorized()
 "
 " Check authorization of client to the requested service.
 " This could be arbitrarily application-specific, but we keep it simple.
 " A normal application (i.e., one using PACs & ACLs) would be using
 " sec_acl_mgr_is_authorized() instead of this function.
 "/

int
is_authorized(
 unsigned_char_t "client_princ_name,
 int requested_op)
{

/" Check if we want to let this client do this operation. "/
if (strcmp(client_princ_name, CLIENT_PRINC_NAME) == @
&& requested_op == GETSPAN_OP) {

/" OK, we'll let this access happen. "/
 return(IS_AUTHORIZED);
 }

/" Sorry, Charlie. "/
 return(NOT_AUTHORIZED);
}

Figure 145 (Part 2 of 2). Reference Monitor for TIMOP Example

302 DCE Application Development Guide: Introduction and Style

Appendix C. Greet6 ACL Manager Example

The source code listings for the Greet6 ACL Manager example follows:

Greet6 Server Code
#pragma runopts(stack(12K,4K,ANY,KEEP))

#include <stdio.h>
#include <locale.h>
#include <dce/daclmgrv@.h>
#include <dce/dce_error.h>
#include <pthread.h>
#include <dce/sec_login.h>
#include "greet6.h"
#include "rdaclifv@.h"

globalref rdaclif_v@_@_epv_t rdaclif_v@_@_manager_epv;
globalref greet_v1_@_epv_t greet_v1_@_manager_epv;
#define KEYFILE "/tmp/gkeyfile"
#define KEYTAB "FILE:" ## KEYFILE
#define MAX_CONCURRENT_CALLS 5

int main(int argc, char "argv[])
{
 rpc_binding_vector_p_t bvec;
 error_status_t st, error_inq_st;
 ndr_boolean validfamily;
 ndr_char "string_binding;
 int i;
 uuid_vector_t acl_server_obj_uuids;
 sec_acl_mgr_handle_t sec_acl_mgr;
 uuid_t manager_types[1];
 int size_used,num_types;
 char error_text[1@24];

pthread_t main_thread = pthread_self();

/" Declarations for Security "/

 sec_passwd_rec_t pwrec;
 boolean32 reset_passwd;
 sec_login_auth_src_t auth_src;
 sec_login_handle_t login_context;
 char dce_login[STR_SZ], passwd[STR_SZ];

setlocale(LC_ALL, "");

if (argc != 3) {
fprintf(stderr, "Usage: %s <PRINCIPAL> <PASSWORD>\n",argv[@]);

 fflush(stderr);
 exit(1);
 }

 strcpy(dce_login,argv[1]);
 strcpy(passwd,argv[2]);

printf("Establishing login identity with security server...\n");
 fflush(stdout);

 sec_login_setup_identity(dce_login,sec_login_no_flags,&login_context,&st);

 Copyright IBM Corp. 1994, 2001 303

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot set up login identity: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" Check the passwd.h header file for this structure "/

pwrec.key.tagged_union.plain = passwd;
 pwrec.key.key_type = sec_passwd_plain;
 pwrec.pepper = NULL;
 pwrec.version_number = sec_passwd_c_version_none;

 sec_login_validate_identity(login_context,&pwrec,&reset_passwd, &auth_src,&st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot validate login identity: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

if (reset_passwd) {
printf("Password must be changed !\n");

 fflush(stdout);
 }

 sec_login_set_context(login_context,&st);
if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot set login context: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

fprintf(stdout, "Identity established !\n");
 fflush(stdout);

/" Initializing the ACL manager database "/

fprintf(stdout, "Initializing ACL database\n");
 fflush(stdout);

 sec_acl_mgr_configure(sec_acl_mgr_config_create,NULL,&sec_acl_mgr,&st);

fprintf(stdout, "Getting ACL manager types \n");
 fflush(stdout);

 sec_acl_mgr_get_manager_types(sec_acl_mgr,NULL,sec_acl_type_object,
 1,&size_used,&num_types,manager_types,
 &st);

printf("Setting Protocol sequence...\n");
 fflush(stdout);

/" Calling rpc_server_use_all_protseqs to tell the RPC runtime "/
to use all supported protocol sequences "/

 rpc_server_use_all_protseqs(MAX_CONCURRENT_CALLS, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot establish protocol sequences: %s\n", error_text);

 fflush(stderr);
 exit(1);

304 DCE Application Development Guide: Introduction and Style

 }

printf("Registering Greet interface...\n");
 fflush(stdout);

/" Register interface with RPC runtime "/

 rpc_server_register_if(greet_v1_@_s_ifspec, NULL,
(rpc_mgr_epv_t) &greet_v1_@_manager_epv, &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register server interface: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

printf("Registering ACL interface...\n");
 fflush(stdout);

 rpc_server_register_if(rdaclif_v@_@_s_ifspec, NULL,
 (rpc_mgr_epv_t)&rdaclif_v@_@_manager_epv, &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register acl interface: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" Get binding handles from the runtime "/

 rpc_server_inq_bindings(&bvec, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot inquire bindings: %s\n", error_text);

 exit(1);
 }

/" Display the bindings "/

printf("Server Greet bindings:\n");
 fflush(stdout);

for (i=@; i < bvec->count; i++) {
 rpc_binding_to_string_binding(bvec->binding_h[i],&string_binding, &st);

printf("%s\n", (char ")string_binding);
 fflush(stdout);
 rpc_string_free(&string_binding, &st);
 }

/" Register Auth... information with RPC runtime "/

printf("Registering Greet Server Auth info...\n");
 fflush(stdout);

 rpc_server_register_auth_info(dce_login,rpc_c_authn_dce_secret,NULL,KEYTAB,&st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register auth - %s\n", error_text);

 exit(1);
 }

/" Registering server endpoint with the local Endpoint Map "/

 Appendix C. Greet6 ACL Manager Example 305

printf("Registering Greet interface with EPM...\n");
 fflush(stdout);

rpc_ep_register(greet_v1_@_s_ifspec, bvec, NULL,
"Greet version 1.@ server", &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register endpoint: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" Registering the ACL interface with the endpoint mapper "/

printf("Registering ACL interface with EPM...\n");
 fflush(stdout);

acl_server_obj_uuids.count = 1;
acl_server_obj_uuids.uuid[@] = &manager_types[@];

rpc_ep_register(rdaclif_v@_@_s_ifspec, bvec, &acl_server_obj_uuids,
"Greet ACL Manager", &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot register ACL endpoint: %s\n", error_text);

 exit(1);
 }

fprintf(stdout, "Exporting server bindings to namespace...\n");
 fflush(stdout);

 rpc_ns_binding_export(rpc_c_ns_syntax_default,
(unsigned_char_t ") "/.:<your_dir_name>/greet6",

 greet_v1_@_s_ifspec,
bvec, (uuid_vector_t ")NULL,&st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot export binding: %s\n", error_text);

 exit(1);
 }

 /" rdaclif_v@_@_s_ifspec, bvec "/

fprintf(stdout, "Exporting ACL bindings to namespace...\n");
 fflush(stdout);

 rpc_ns_binding_export(rpc_c_ns_syntax_default,
 (unsigned_char_p_t) "/.:/<your_dir_name>/greet_acl",
 rdaclif_v@_@_s_ifspec, bvec,
 &acl_server_obj_uuids, &st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot export ACL binding - %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" At this point the server waits for clients "/

 TRY {

printf("Server Greet is listening...\n");
 fflush(stdout);

306 DCE Application Development Guide: Introduction and Style

 rpc_server_listen(MAX_CONCURRENT_CALLS, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot listen - %s\n", error_text);

 fflush(stderr);
 exit(1);
 }
 }

 CATCH_ALL {
 CLEANUP:

printf("Unregistering greet interface\n");
 fflush(stdout);

rpc_server_unregister_if(greet_v1_@_s_ifspec, NULL, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot unregister interface: %s\n", error_text);

 fflush(stderr);
 }

printf("Unregistering ACL interface\n");
 fflush(stdout);

rpc_server_unregister_if(rdaclif_v@_@_s_ifspec, NULL, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot unregister interface: %s\n", error_text);

 fflush(stderr);
 }

printf("Unregistering Greet endpoint\n");
 fflush(stdout);

rpc_ep_unregister(greet_v1_@_s_ifspec, bvec, NULL, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot unregister endpoint: %s\n", error_text);

 fflush(stderr);
 }

printf("Unregistering ACL endpoint\n");
 fflush(stdout);

rpc_ep_unregister(rdaclif_v@_@_s_ifspec, bvec, &acl_server_obj_uuids, &st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot unregister endpoint: %s\n", error_text);

 fflush(stderr);
 }

printf("Unexporting Greet handle from the namespace\n");
 fflush(stdout);

 rpc_ns_binding_unexport(rpc_c_ns_syntax_default,"/.:/<your_dir_name>/greet6",
 greet_v1_@_s_ifspec,NULL,&st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot unexport Greet handle: %s\n", error_text);

 fflush(stderr);
 }

 Appendix C. Greet6 ACL Manager Example 307

printf("Unexporting ACL handle from the namespace\n");
 fflush(stdout);

 rpc_ns_binding_unexport(rpc_c_ns_syntax_default,"/.:/<your_dir_name>/greet_acl",
 rdaclif_v@_@_s_ifspec,&acl_server_obj_uuids,&st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &error_inq_st);
fprintf(stderr, "Cannot unexport ACL handle: %s\n", error_text);

 fflush(stderr);
 }

 printf("Done!\n");
 fflush(stdout);

 }

 ENDTRY;

return(@);
}

Greet6 Manager Code
#include <stdio.h>
#include <dce/id_base.h>
#include <dce/daclmgrv@.h>
#include "greet6.h"

long authorize_client();

/" This is where the RPC call ends up. The code calls the routine
"authorize_client" to determine if the call can proceed "/

void greet_rpc(handle_t h,
 char "client_greeting,
 char "server_reply)
{

printf("The client says: %s\n",client_greeting);
 fflush(stdout);

if (authorize_client(h)) {
fprintf(stdout,"Client is authorized\n");

 fflush(stdout);
strncpy(server_reply, "Hi Client !", STR_SZ);

 }

 else {
printf ("Client is NOT authorized\n");

 fflush (stdout);
strncpy(server_reply, "You are NOT authorized !", STR_SZ);

 }
}

long authorize_client(rpc_binding_handle_t bh)
{
 rpc_authz_handle_t privs;
 sec_id_pac_t "greetprivs;
 char "server_princ_name;

308 DCE Application Development Guide: Introduction and Style

 char "str_principal,"str_group,"str_realm;
 unsigned32 protect_level,authn_svc,authz_svc,st;

sec_acl_permset_t required_access = sec_acl_perm_unused_@@@@@@8@;
 unsigned32 size_used,num_types;
 uuid_t manager_types[1];
 char "str_uuid;
 int x;

 printf("Validating Client\n");
 fflush(stdout);

/" Getting the clients PAC from the runtime "/

rpc_binding_inq_auth_client(bh, &privs, &server_princ_name,
 &protect_level, &authn_svc,
 &authz_svc, &st);

if (st != rpc_s_ok) {
fprintf(stderr, "Client not even close! \n",st);

 fflush(stderr);
 }

else if (authn_svc != rpc_c_authn_dce_secret) {
printf("Invalid authentication service.\n");

 fflush(stdout);
 }

else if (protect_level != rpc_c_protect_level_pkt_integ) {
printf("Invalid protection level.\n");

 fflush(stdout);
 }

else if (authz_svc != rpc_c_authz_dce) {
printf("Invalid authorization level.\n");

 fflush(stdout);
 }

else if (strcmp(server_princ_name, "/.../Your_Cell_Name/greets") != @) {
printf("Invalid server principal name %s.\n",server_princ_name) ;

 fflush(stdout);
 }
 else {

printf("Client appears to check out !\n");
 fflush(stdout);

greetprivs = (sec_id_pac_t ") privs;

printf("Authenticated --> %d \n", greetprivs->authenticated);
 fflush(stdout);

 uuid_to_string(&greetprivs->principal.uuid,&str_principal,&st);
 uuid_to_string(&greetprivs->group.uuid,&str_group,&st);
 uuid_to_string(&greetprivs->realm.uuid,&str_realm,&st);

printf("Principal uuid -> %s\n",str_principal);
 fflush(stdout);

printf("Group uuid -> %s\n",str_group);
 fflush(stdout);

printf("Realm uuid -> %s\n",str_realm);
 fflush(stdout);

/" Retrieving the ACL UUID "/

 sec_acl_mgr_get_manager_types(NULL,NULL,sec_acl_type_object,1,&size_used,

 Appendix C. Greet6 ACL Manager Example 309

 &num_types,manager_types,&st);

 uuid_to_string(&(manager_types[@]),&str_uuid,&st);
fprintf(stdout, "Manager uuid %s\n",str_uuid);

 fflush(stdout);

 rpc_ss_enable_allocate();
x = sec_acl_mgr_is_authorized(NULL,required_access,greetprivs,NULL,

 &(manager_types[@]), NULL,NULL,&st);
 rpc_ss_disable_allocate();

 return(x);
 }

 return(@);
}

globaldef greet_v1_@_epv_t greet_v1_@_manager_epv = {greet_rpc};

Greet6 secacl Code
#include <dce/daclmgrv@.h>
#include <dce/uuid.h>
#include <stdio.h>

static uuid_t mgr_uuid;
void free_acl();
void get_database_name(uuid_t "manager_type, char database_name[],
 error_status_t "st);

/" This routine configures the ACL database "/

void sec_acl_mgr_configure
(
 sec_acl_mgr_config_t config_info,
 unsigned_char_p_t db_name,
 sec_acl_mgr_handle_t "sec_acl_mgr,
 error_status_t "st
)
{
 sec_acl_list_t sec_acl_list;
 int size_used,num_types;
 uuid_t manager_types[1];
 char dummy_name[1@];
 uuid_t dummy_uuid;
 char database_name[1@24];
 FILE "fp;

fprintf(stdout, "Inside sec_acl_mgr_configure\n");
 fflush(stdout);

"sec_acl_mgr = NULL;

/" Setting the ACL manager type uuid. This is so the ACL can be
uniquely identified from anywhere "/

 uuid_from_string("@@668186-BD89-1B55-A97A-1@@@5AA89D46",&mgr_uuid,st);

/" Retrieves the ACL file name based on the uuid "/

310 DCE Application Development Guide: Introduction and Style

 get_database_name(&mgr_uuid,database_name,st);

if (config_info == sec_acl_mgr_config_create) {

/" If our database file already exists, then do not initialize it! "/

if ((fp = fopen(database_name,"r")) != NULL) {
"st = sec_acl_mgr_file_open_error;

 fclose(fp);
 return;
 }

/" Initializing the ACL "/

sec_acl_list.num_acls = 1;
sec_acl_list.sec_acls[@]->sec_acl_manager_type = mgr_uuid;

sec_acl_list.sec_acls[@]->num_entries = @;
sec_acl_list.sec_acls[@]->sec_acl_entries = NULL;

/" Creating a dummy realm name and dummy realm uuid "/
/" This can be reset to an actual name and uuid when you "/
/" run the acl_edit command. "/

 strcpy(dummy_name,"greet");
 uuid_create_nil(&dummy_uuid,st);

sec_acl_list.sec_acls[@]->default_realm.name = (char ") calloc(1,strlen(dummy_name) + 1);
 strcpy(sec_acl_list.sec_acls[@]->default_realm.name,dummy_name);

sec_acl_list.sec_acls[@]->default_realm.uuid = dummy_uuid;

/" Calling "sec_acl_mgr_replace" to write the info to the file "/

 sec_acl_mgr_replace(NULL,db_name,&mgr_uuid,sec_acl_type_object,&sec_acl_list,st);
 free(sec_acl_list.sec_acls[@]->default_realm.name);
 }

"st = error_status_ok;
 fclose(fp);

fprintf(stdout, "Leaving sec_acl_mgr_configure\n");
 fflush(stdout);
}

/" This routine finds the total permissions a user has on the object. "/
/" If the principal has a user entry and a group entry in the ACL, then "/
/" the permissions are combined. "/

void sec_acl_mgr_get_access(
 sec_acl_mgr_handle_t sec_acl_mgr,
 sec_id_pac_t "accessor_info,
 sec_acl_key_t sec_acl_key,
 uuid_t "manager_type,
 sec_id_t "user_obj,
 sec_id_t "group_obj,
 sec_acl_permset_t "net_rights,
 error_status_t "st
)
{
 sec_acl_list_t "sec_acl_list;
 sec_acl_t "sec_acl_p;

 Appendix C. Greet6 ACL Manager Example 311

int i; /" For traversing entry list. "/

fprintf(stdout, "Inside sec_acl_manager get_access...\n");
 fflush(stdout);

sec_acl_mgr_lookup(sec_acl_mgr, sec_acl_key, manager_type,
sec_acl_type_object, &sec_acl_list, st);

if ("st != error_status_ok) {
fprintf(stderr, "Leaving sec_acl_manager get_access...\n");

 fflush(stderr);
 return;
 }

sec_acl_p = sec_acl_list->sec_acls[@];
"net_rights = @;

for (i = @; i < sec_acl_p->num_entries; i++) {

 switch(sec_acl_p->sec_acl_entries[i].entry_info.entry_type) {

 case sec_acl_e_type_user:
 if (uuid_equal(&(accessor_info->principal.uuid),
 &(sec_acl_p->sec_acl_entries[i].entry_info.tagged_union.id.uuid), st))

"net_rights = ("net_rights | sec_acl_p->sec_acl_entries[i].perms);

 break;

 case sec_acl_e_type_group:
 if (uuid_equal(&(accessor_info->group.uuid),
 &(sec_acl_p->sec_acl_entries[i].entry_info.tagged_union.id.uuid), st))

"net_rights = ("net_rights | sec_acl_p->sec_acl_entries[i].perms);
 break;

 default:
 break;
 }
 }

"st = error_status_ok;

fprintf(stdout, "Leaving sec_acl_manager get_access...\n");
 fflush(stdout);

 return;
}

/" This routine returns all of the available manager types.
Since we only have a single manager type, that is all we return "/

void sec_acl_mgr_get_manager_types
(
 sec_acl_mgr_handle_t sec_acl_mgr,
 sec_acl_key_t sec_acl_key,
 sec_acl_type_t sec_acl_type,
 unsigned32 size_avail,
 unsigned32 "size_used,
 unsigned32 "num_types,
 uuid_t manager_types[],
 error_status_t "st
)
{

fprintf(stdout, "Inside sec_acl_mgr_get_manager_types\n");

312 DCE Application Development Guide: Introduction and Style

 fflush(stdout);

"num_types = 1;

if (size_avail < 1)
"size_used = @;

 else {
"size_used = 1;
manager_types[@] = mgr_uuid;

 }

"st = error_status_ok;

fprintf(stdout, "Leaving sec_acl_mgr_get_manager_types\n");
 fflush(stdout);

}

#define NUM_PSTRS 8

/" These permissions are from the dacl_manager example. A new
permission "g" has been added for this Greet example "/

static sec_acl_printstring_t hardcoded_printstrings[] = {
 { "g", "greet", sec_acl_perm_unused_@@@@@@8@},

{ "c", "control", sec_acl_perm_owner },
 { "r", "read", sec_acl_perm_read },
 { "w", "write", sec_acl_perm_write },

{ "x", "execute", sec_acl_perm_execute },
 { "i", "insert", sec_acl_perm_insert },
 { "d", "delete", sec_acl_perm_delete },
 { "t", "test", sec_acl_perm_test }
};

static sec_acl_printstring_t hardcoded_manager_info = {
"acl_test_server", "Sample ACL manager.",
(sec_acl_perm_owner | sec_acl_perm_read | sec_acl_perm_write |
sec_acl_perm_execute | sec_acl_perm_insert | sec_acl_perm_delete |
sec_acl_perm_test | sec_acl_perm_unused_@@@@@@8@)

};

void sec_acl_mgr_get_printstring
(
 sec_acl_mgr_handle_t sec_acl_mgr,
 uuid_t "manager_type,
 unsigned32 size_avail,
 uuid_t "manager_type_chain,
 sec_acl_printstring_t "manager_info,
 boolean32 "tokenize,
 unsigned32 "total_num_printstrings,
 unsigned32 "size_used,
 sec_acl_printstring_t printstrings[],
 error_status_t "st
)
{
 int i;
 error_status_t err_st;
 char "uuid1,"uuid2;

fprintf(stdout, "Inside sec_acl_mgr_get_printstring...\n");
 fflush(stdout);

 Appendix C. Greet6 ACL Manager Example 313

if (size_avail < NUM_PSTRS)
"size_used = size_avail;

 else
"size_used = NUM_PSTRS;

 uuid_create_nil(manager_type_chain, &err_st);
"tokenize = false;
"total_num_printstrings = NUM_PSTRS;

 strcpy(manager_info->printstring,hardcoded_manager_info.printstring);
 strcpy(manager_info->helpstring,hardcoded_manager_info.helpstring);

manager_info->permissions = hardcoded_manager_info.permissions;

if (!uuid_equal(&mgr_uuid, manager_type, &err_st)) {
"st = sec_acl_unknown_manager_type;
fprintf(stderr, "Unknown manager type.\n");

 fflush(stderr);
fprintf(stderr, "Leaving sec_acl_mgr_get_printstring.\n");

 fflush(stdout);
 return;
 }

 else
for (i = @; i < "size_used; i++) {

 strcpy(printstrings[i].printstring,hardcoded_printstrings[i].printstring);
 strcpy(printstrings[i].helpstring,hardcoded_printstrings[i].helpstring);

printstrings[i].permissions = hardcoded_printstrings[i].permissions;
 }

"st = error_status_ok;

fprintf(stdout, "Leaving sec_acl_mgr_get_printstring.\n");
 fflush(stdout);

}

boolean32 grant_access
(
 sec_acl_permset_t entry_perms,
 sec_acl_permset_t desired,
 sec_acl_permset_t "granted
)
{

boolean32 access = false;

fprintf(stdout, "Inside grant access...\n");
 fflush(stdout);

"granted = (entry_perms & desired);

if ("granted == desired)
access = true;

fprintf(stdout, "Leaving grant access...\n");
 fflush(stdout);

 return access;
}

314 DCE Application Development Guide: Introduction and Style

/" This routine checks to see if a user is authorized.
Currently, it ONLY checks local user and group entries. "/

boolean32 sec_acl_mgr_is_authorized
(
 sec_acl_mgr_handle_t sec_acl_mgr,
 sec_acl_permset_t desired_access,
 sec_id_pac_t "accessor_info,
 sec_acl_key_t sec_acl_key,
 uuid_t "manager_type,
 sec_id_t "user_obj,
 sec_id_t "group_obj,
 error_status_t "st
)
{
 sec_acl_list_t "sec_acl_list;
 sec_acl_t "sec_acl_p;

int i; /" For traversing entry list. "/
 sec_acl_permset_t granted;

fprintf(stdout, "Inside sec_acl_mgr_is_authorized...\n");
 fflush(stdout);

sec_acl_mgr_lookup(sec_acl_mgr, sec_acl_key, manager_type,
sec_acl_type_object, &sec_acl_list, st);

if ("st != error_status_ok)
 return false;

sec_acl_p = sec_acl_list->sec_acls[@];

for (i = @; i < sec_acl_p->num_entries; i++) {

 switch(sec_acl_p->sec_acl_entries[i].entry_info.entry_type) {

 case sec_acl_e_type_user:
printf("Validating user uuid\n");

 if (uuid_equal(&(accessor_info->principal.uuid),
 &(sec_acl_p->sec_acl_entries[i].entry_info.tagged_union.id.uuid), st))

if (grant_access(sec_acl_p->sec_acl_entries[i].perms,desired_access,&granted)) {
fprintf(stdout, "Leaving sec_acl_mgr_is_authorized... \n");

 fflush(stdout);
 return true;
 }

 break;

 case sec_acl_e_type_group:

fprintf(stdout, "Validating group uuid\n");
 fflush(stdout);

 if (uuid_equal(&(accessor_info->group.uuid),
 &(sec_acl_p->sec_acl_entries[i].entry_info.tagged_union.id.uuid), st))

if (grant_access(sec_acl_p->sec_acl_entries[i].perms,desired_access,&granted)) {

fprintf(stdout, "Leaving sec_acl_mgr_is_authorized...\n");
 fflush(stdout);

 return true;
 }

 break;

 Appendix C. Greet6 ACL Manager Example 315

 default:
 break;
 }
 }

fprintf(stdout, "Leaving sec_acl_mgr_is_authorized...\n");
 fflush(stdout);

 return false;
}

/" This routine retrieves the ACL from the database "/

void sec_acl_mgr_lookup
(
 sec_acl_mgr_handle_t sec_acl_mgr,
 sec_acl_key_t sec_acl_key,
 uuid_t "manager_type,
 sec_acl_type_t sec_acl_type,
 sec_acl_list_t ""sec_acl_list,
 error_status_t "st
)
{
 FILE "fp;
 sec_acl_t "sec_acl;
 sec_acl_entry_t "sec_acl_entry;
 int i;
 int num_entries;
 char str_uuid1[4@],str_uuid2[4@],name[1@24];
 char database_name[1@24];
 sec_acl_permset_t perms;
 int entry_type;
 char "str_uuid;
 error_status_t err_st;

fprintf(stdout, "Inside sec_acl_mgr_lookup...\n");
 fflush(stdout);

"sec_acl_list = (sec_acl_list_t ") rpc_ss_allocate(sizeof(sec_acl_list_t));

("sec_acl_list)->num_acls = 1;
("sec_acl_list)->sec_acls[@] = (sec_acl_t ") rpc_ss_allocate(sizeof(sec_acl_t));

sec_acl = ("sec_acl_list)->sec_acls[@];

 get_database_name(manager_type,database_name,st);

fprintf(stdout, "Opening %s\n",database_name);
 fflush(stdout);

fp = fopen(database_name,"r,recfm="");

if (fp == NULL) {
"st = sec_acl_cant_allocate_memory;

fprintf(stderr,"Can't open %s\n",database_name);
 fflush(stderr);
 fprintf(stderr,"Leaving sec_acl_mgr_lookup...\n");
 fflush(stderr);

316 DCE Application Development Guide: Introduction and Style

 return;
 }

fprintf(stdout, "Getting %s database info\n",database_name);
 fflush(stdout);

fscanf(fp,"%s %s %s %d",name,str_uuid1,str_uuid2,&num_entries);

fprintf(stdout, "1 %s\n2 %s\n3 %s\n4 %d\n",name,str_uuid1,str_uuid2,num_entries);
 fflush(stdout);

sec_acl->default_realm.name = (char ") rpc_ss_allocate(strlen(name));
 strcpy(sec_acl->default_realm.name,name);

 uuid_from_string(str_uuid1,&(sec_acl->default_realm.uuid),st);
 uuid_from_string(str_uuid2,&(sec_acl->sec_acl_manager_type),st);

sec_acl->num_entries = num_entries;

sec_acl->sec_acl_entries = (sec_acl_entry_t ") rpc_ss_allocate(num_entries " sizeof(sec_acl_entry_t));

 fprintf(stdout, "\nUsers...\n");
 fflush(stdout);

for (i=@;i<num_entries;i++) {

sec_acl_entry = &(sec_acl->sec_acl_entries[i]);

fscanf(fp,"%d %d %s %s\n",&perms,&entry_type,name,str_uuid1);

fprintf(stdout, "%d %d %s %s\n",perms,entry_type,name,str_uuid1);
 fflush(stdout);

sec_acl_entry->perms = perms;
sec_acl_entry->entry_info.entry_type = (sec_acl_entry_type_t) entry_type;

sec_acl_entry->entry_info.tagged_union.id.name = (char ") rpc_ss_allocate(strlen(name));
 strcpy(sec_acl_entry->entry_info.tagged_union.id.name,name);
 uuid_from_string(str_uuid1,&(sec_acl_entry->entry_info.tagged_union.id.uuid),st);
 }

 fclose(fp);

"st = error_status_ok;

 fprintf(stdout,"Leaving sec_acl_mgr_lookup...\n");
 fflush(stdout);

 return;
}

/" This routine dumps the ACL to the file "/

void sec_acl_mgr_replace
(
 sec_acl_mgr_handle_t sec_acl_mgr,
 sec_acl_key_t sec_acl_key,
 uuid_t "manager_type,
 sec_acl_type_t sec_acl_type,
 sec_acl_list_t "sec_acl_list,

 Appendix C. Greet6 ACL Manager Example 317

 error_status_t "st
)
{
 FILE "fp;
 sec_acl_t "sec_acl;
 sec_acl_entry_t "sec_acl_entry;
 int i;
 int num_entries;
 char "str_uuid1,"str_uuid2;
 char database_name[1@24];

fprintf(stdout, "Inside sec_acl_mgr_replace\n");
 fflush(stdout);

sec_acl = sec_acl_list->sec_acls[@];

 get_database_name(manager_type,database_name,st);

fp = fopen(database_name,"w,recfm="");

if (fp == NULL) {
"st = sec_acl_cant_allocate_memory;
fprintf(stderr, "Can't open %s\n",database_name);

 fflush(stderr);
fprintf(stderr, "Leaving sec_acl_mgr_replace...\n");

 fflush(stderr);
 return;
 }

 uuid_to_string(&(sec_acl->default_realm.uuid),&str_uuid1,st);
 uuid_to_string(&(sec_acl->sec_acl_manager_type),&str_uuid2,st);

fprintf(stdout, "%s %s %s %d\n",sec_acl->default_realm.name,
 str_uuid1,
 str_uuid2,
 sec_acl->num_entries);

 fflush(stdout);

 fprintf(fp,"%s\n%s\n%s\n%d\n",sec_acl->default_realm.name,
 str_uuid1,
 str_uuid2,
 sec_acl->num_entries);

for (i=@;i<sec_acl->num_entries;i++) {

sec_acl_entry = &(sec_acl->sec_acl_entries[i]);

 uuid_to_string(&(sec_acl_entry->entry_info.tagged_union.id.uuid),&str_uuid1,st);

fprintf(stdout, "%d %d %s %s\n",sec_acl_entry->perms,
 sec_acl_entry->entry_info.entry_type,
 sec_acl_entry->entry_info.tagged_union.id.name,
 str_uuid1);
 fflush(stdout);

fprintf(fp,"%d %d %s %s\n",sec_acl_entry->perms,
 sec_acl_entry->entry_info.entry_type,
 sec_acl_entry->entry_info.tagged_union.id.name,
 str_uuid1);
 }

318 DCE Application Development Guide: Introduction and Style

 fclose(fp);

fprintf(stdout, "Leaving sec_acl_mgr_replace\n");
 fflush(stdout);

"st = error_status_ok;
}

void get_database_name(uuid_t "manager_type, char database_name[],error_status_t "st) {
 if (uuid_equal(manager_type,&mgr_uuid,st))
 strcpy(database_name,"GREETACL");
}

Greet6 rdacl Code
#include <stdio.h>
#include <string.h>
#include <dce/uuid.h>
#include <dce/rdaclifv@.h>
#include <dce/daclmgrv@.h>

void rdacl_lookup(h, component_name, manager_type_p, sec_acl_type, sec_acl_result_p)
handle_t h;
sec_acl_component_name_t component_name;
uuid_t "manager_type_p;
sec_acl_type_t sec_acl_type;
sec_acl_result_t "sec_acl_result_p;

{
 error_status_t st;

fprintf(stdout, "Inside rdacl_lookup...\n");
 fflush(stdout);

fprintf(stdout, "This is the component name %s\n",component_name);
 fflush(stdout);

sec_acl_mgr_lookup(NULL, (sec_acl_key_t) component_name,
 manager_type_p, sec_acl_type,
 &sec_acl_result_p->tagged_union.sec_acl_list, &st);

if (st == error_status_ok)
sec_acl_result_p->st = error_status_ok;

 else
sec_acl_result_p->st = st;

fprintf(stdout, "Leaving rdacl_lookup\n");
 fflush(stdout);
}

void rdacl_replace(h, component_name, manager_type_p, sec_acl_type, sec_acl_list_p, st_p)
handle_t h;
sec_acl_component_name_t component_name;
uuid_t "manager_type_p;
sec_acl_type_t sec_acl_type;
sec_acl_list_t "sec_acl_list_p;

 Appendix C. Greet6 ACL Manager Example 319

error_status_t "st_p;
{

fprintf(stdout, "Inside rdacl_lookup...\n");
 fflush(stdout);

sec_acl_mgr_replace(NULL, (sec_acl_key_t) component_name,
manager_type_p, sec_acl_type, sec_acl_list_p, st_p);

fprintf(stdout, "Leaving rdacl_replace\n");
 fflush(stdout);
}

boolean32 rdacl_test_access(h, component_name, manager_type_p, desired_permset, st_p)

handle_t h;
sec_acl_component_name_t component_name;
uuid_t "manager_type_p;
sec_acl_permset_t desired_permset;
error_status_t "st_p;

{
 error_status_t st;
 sec_id_pac_t unauth_pac;

sec_id_t "user_obj = NULL;
sec_id_t "group_obj = NULL;

 rpc_authz_handle_t privs;
 unsigned_char_p_t server_princ_name;
 unsigned32 authn_level;
 unsigned32 authn_svc;
 unsigned32 authz_svc;

unsigned_char_t dummy_name = '\@';
 boolean32 is_auth;

fprintf(stdout, "Entered rdacl_test_access\n");
 fflush(stdout);
/"

if (! uuid_equal(&mgr_uuid, manager_type_p, &st)) {
"st_p = sec_acl_unknown_manager_type;

 return false;
 }
 else
"/

"st_p = error_status_ok;

/" Inquiring the runtime as to who called us "/

rpc_binding_inq_auth_client(h, &privs, &server_princ_name, &authn_level,
&authn_svc, &authz_svc, st_p);

if ("st_p != error_status_ok) {

fprintf(stderr, "Leaving rdacl_test_access\n");
 fflush(stderr);
 return false;
 }

 else {

/" May need to generate an unauthenticated (dummy) PAC "/

if (authz_svc != rpc_c_authz_dce) {

320 DCE Application Development Guide: Introduction and Style

unauth_pac.pac_type = sec_id_pac_format_v1;
unauth_pac.authenticated = false;

 uuid_create_nil(&unauth_pac.realm.uuid, &st);
unauth_pac.principal.uuid = unauth_pac.realm.uuid;
unauth_pac.group.uuid = unauth_pac.realm.uuid;
unauth_pac.realm.name = &dummy_name;
unauth_pac.principal.name = &dummy_name;
unauth_pac.group.name = &dummy_name;
unauth_pac.num_groups = @;
unauth_pac.num_foreign_groups = @;
unauth_pac.groups = NULL;
unauth_pac.foreign_groups = NULL;
privs = (rpc_authz_handle_t) &unauth_pac;

 }

is_auth = sec_acl_mgr_is_authorized (NULL, desired_permset,
(sec_id_pac_t ") privs,

 (sec_acl_key_t) component_name,
 manager_type_p, user_obj,
 group_obj, st_p);

fprintf(stdout, "Leaving rdacl_test_access\n");
 fflush(stdout);

 return is_auth;
 }
}

boolean32 rdacl_test_access_on_behalf(h, component_name, manager_type_p, subject_p, desired_permset, st_p)

handle_t h;
sec_acl_component_name_t component_name;
uuid_t "manager_type_p;
sec_id_pac_t "subject_p;
sec_acl_permset_t desired_permset;
error_status_t "st_p;

{
 error_status_t st;
 sec_id_pac_t unauth_pac;

sec_id_t "user_obj = NULL;
sec_id_t "group_obj = NULL;

 rpc_authz_handle_t privs;
 unsigned_char_p_t server_princ_name;
 unsigned32 authn_level;
 unsigned32 authn_svc;
 unsigned32 authz_svc;

unsigned_char_t dummy_name = '\@';
 boolean32 isauth;

/"
if (! uuid_equal(&mgr_uuid, manager_type_p, &st))

"st_p = sec_acl_unknown_manager_type;
 else
"/

"st_p = error_status_ok;

/" Inquire the runtime as to who called us "/

rpc_binding_inq_auth_client(h, &privs, &server_princ_name, &authn_level,
&authn_svc, &authz_svc, st_p);

if ("st_p != error_status_ok)

 Appendix C. Greet6 ACL Manager Example 321

 return false;
 else {

/" May need to generate an unauthenticated (dummy) PAC "/

if (authz_svc != rpc_c_authz_dce) {
unauth_pac.pac_type = sec_id_pac_format_v1;
unauth_pac.authenticated = false;

 uuid_create_nil(&unauth_pac.realm.uuid, &st);
unauth_pac.principal.uuid = unauth_pac.realm.uuid;
unauth_pac.group.uuid = unauth_pac.realm.uuid;
unauth_pac.realm.name = &dummy_name;
unauth_pac.principal.name = &dummy_name;
unauth_pac.group.name = &dummy_name;
unauth_pac.num_groups = @;
unauth_pac.num_foreign_groups = @;
unauth_pac.groups = NULL;
unauth_pac.foreign_groups = NULL;
privs = (rpc_authz_handle_t) &unauth_pac;

 }

return((sec_acl_mgr_is_authorized (NULL, desired_permset,
(sec_id_pac_t ") privs,

 (sec_acl_key_t) component_name,
 manager_type_p, user_obj,
 group_obj, st_p))
 &&

(sec_acl_mgr_is_authorized (NULL, desired_permset,
(sec_id_pac_t ") subject_p,

 (sec_acl_key_t) component_name,
 manager_type_p, user_obj,

group_obj, st_p)));
 }
}

void rdacl_get_manager_types(h, component_name, acl_type, size_avail, size_used_p, num_types_p,
 manager_types, st_p)

handle_t h;
sec_acl_component_name_t component_name;
sec_acl_type_t acl_type;
unsigned32 size_avail;
unsigned32 "size_used_p;
unsigned32 "num_types_p;
uuid_t "manager_types;
error_status_t "st_p;

{
fprintf(stdout, "Entering rdacl_get_manager_types...\n");

 fflush(stdout);

 sec_acl_mgr_get_manager_types(h,component_name,acl_type,size_avail,
 size_used_p,num_types_p,manager_types,st_p);
fprintf(stdout, "Leaving rdacl_get_manager_types\n");

 fflush(stdout);
}

/" This one is important because dcecp calls this routine first to get the
manager type and the POSIX semantics "/

void rdacl_get_mgr_types_semantics(h, component_name, acl_type,

322 DCE Application Development Guide: Introduction and Style

size_avail, size_used_p, num_types_p,
manager_types, posix_semantics, st_p)

handle_t h;
sec_acl_component_name_t component_name;
sec_acl_type_t acl_type;
unsigned32 size_avail;
unsigned32 "size_used_p;
unsigned32 "num_types_p;
uuid_t "manager_types;
sec_acl_posix_semantics_t posix_semantics[];
error_status_t "st_p;

{
 uuid_t manager_types_array[1];
 unsigned32 size_used,num_types;

fprintf(stdout, "Inside rdacl_get_mgr_types_semantics...%d\n",size_avail);
 fflush(stdout);

 sec_acl_mgr_get_manager_types(h,component_name,acl_type,1,
 &size_used,&num_types,manager_types_array,st_p);

"num_types_p = 1;

if (size_avail < 1)
"size_used_p = @;

 else {
"size_used_p = 1;

 manager_types[@] = manager_types_array[@];
posix_semantics[@] = sec_acl_posix_no_semantics;

 }

"st_p = error_status_ok;
fprintf(stdout, "Leaving rdacl_get_mgr_types_semantics.\n");

 fflush(stdout);
}

void rdacl_get_printstring(h, manager_type_p, size_avail, manager_type_chain,
manager_info, tokenize_p, total_num_printstrings_p,
size_used_p, printstrings, st_p)

handle_t h;
uuid_t "manager_type_p;
unsigned32 size_avail;
uuid_t "manager_type_chain;
sec_acl_printstring_t "manager_info;
boolean32 "tokenize_p;
unsigned32 "total_num_printstrings_p;
unsigned32 "size_used_p;
sec_acl_printstring_t printstrings[];
error_status_t "st_p;

{
fprintf(stdout, "Inside rdacl_get_printstring...\n");

 fflush(stdout);

 sec_acl_mgr_get_printstring(h,manager_type_p,size_avail,manager_type_chain,
 manager_info, tokenize_p,total_num_printstrings_p,
 size_used_p,printstrings,st_p);

fprintf(stdout, "Leaving rdacl_get_printstring\n");

 Appendix C. Greet6 ACL Manager Example 323

 fflush(stdout);
}

/" I didn't implement this one yes because I don't quite understand its function yet "/

void rdacl_get_referral(h, component_name, manager_type_p, sec_acl_type, towers_p, st_p)
handle_t h;
sec_acl_component_name_t component_name;
uuid_t "manager_type_p;
sec_acl_type_t sec_acl_type;
sec_acl_tower_set_t "towers_p;
error_status_t "st_p;

{
fprintf(stdout, "Inside rdacl_get_referral...\n");

 fflush(stdout);

"st_p = sec_acl_not_implemented;

fprintf(stdout, "Leaving rdacl_get_referral...\n");
 fflush(stdout);
}

void rdacl_get_access(h, component_name, manager_type, net_rights, st_p)

handle_t h;
sec_acl_component_name_t component_name;
uuid_t "manager_type;
sec_acl_permset_t "net_rights;
error_status_t "st_p;

{
 rpc_authz_handle_t privs;
 sec_id_pac_t "PAC;
 char "server_princ_name;
 unsigned32 protect_level,authn_svc,authz_svc,st;

fprintf(stdout, "Entering rdacl_get_access...\n");
 fflush(stdout);

 rpc_binding_inq_auth_client(h,&privs,&server_princ_name,
 &protect_level,&authn_svc,&authz_svc,st_p);

PAC = (sec_id_pac_t ") privs;

 sec_acl_mgr_get_access(h,PAC,component_name,manager_type,NULL,NULL,net_rights,st_p);

fprintf(stdout, "Leaving rdacl_get_access\n");
 fflush(stdout);
}

globaldef rdaclif_v@_@_epv_t rdaclif_v@_@_manager_epv = {
 rdacl_lookup,
 rdacl_replace,
 rdacl_get_access,
 rdacl_test_access,
 rdacl_test_access_on_behalf,
 rdacl_get_manager_types,
 rdacl_get_printstring,
 rdacl_get_referral,

324 DCE Application Development Guide: Introduction and Style

 rdacl_get_mgr_types_semantics
};

Greet6 Client Code
#include <stdio.h>
#include <locale.h>
#include <dce/dce_error.h>
#include <dce/sec_login.h>
#include "greet6.h"

int main(int argc, char "argv[])
{
 rpc_binding_handle_t h;
 dce_error_string_t error_text;
 error_status_t st, st1;
 idl_char "string_binding;
 int i, MAX_PASS;
 char reply[STR_SZ];
 char server_principal[STR_SZ];
 char "member;
 rpc_ns_import_handle_t import_context;

/" Declarations for Security "/

 sec_passwd_rec_t pwrec;
 boolean32 reset_passwd;
 sec_login_auth_src_t auth_src;
 sec_login_handle_t login_context;
 char dce_login[STR_SZ], passwd[STR_SZ];

 setlocale(LC_ALL, "");

if (argc != 5) {
fprintf(stderr, "Usage: %s <CLIENT PRINCIPAL> <PASSWD> <SERVER PRINCIPAL NAME> <MAX_PASS>\n",argv[@]);

 fflush(stderr);
 exit(1);
 }

 strcpy(dce_login, argv[1]);
 strcpy(passwd, argv[2]);
 strcpy(server_principal, argv[3]);

MAX_PASS = atoi(argv[4]);

fprintf(stdout,"Establishing Identity with Security Server...\n");
 fflush(stdout);

 sec_login_setup_identity(dce_login,sec_login_no_flags,&login_context,&st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &st1);
fprintf(stderr, "Cannot set up login identity: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" Check the passwd.h header file for this structure "/

pwrec.key.tagged_union.plain = passwd;
 pwrec.key.key_type = sec_passwd_plain;
 pwrec.pepper = NULL;
 pwrec.version_number = sec_passwd_c_version_none;

 Appendix C. Greet6 ACL Manager Example 325

 sec_login_validate_identity(login_context,&pwrec,&reset_passwd, &auth_src,&st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &st1);
fprintf(stderr, "Cannot validate login identity: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

if (reset_passwd) {
printf("Password must be changed !\n");

 fflush(stdout);
 }

 sec_login_set_context(login_context,&st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &st1);
fprintf(stderr, "Cannot set login context: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

printf("Identity established !\n");
 fflush(stdout);

/" Import compatible server bindings from the namespace "/

printf("Importing a binding handle...\n");
 fflush(stdout);

 rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,
 "/.:/your_dir_name/greet6",greet_v1_@_c_ifspec,
 NULL,&import_context,&st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &st1);
fprintf(stderr, "Cannot begin import - %s\n", error_text);

 exit(1);
 }

 rpc_ns_binding_import_next(import_context,&h,&st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &st1);
fprintf(stderr, "Cannot import next: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

 rpc_ns_binding_import_done(&import_context,&st);
if (st != error_status_ok) {

dce_error_inq_text(st, error_text, &st1);
fprintf(stderr, "Cannot end import - %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

/" Using the "rpc_c_authz_dce" option will make the runtime send a PAC
to the server, encrypted with the "server_principal" encryption key "/

printf("Setting Auth info...\n");
 fflush(stdout);

326 DCE Application Development Guide: Introduction and Style

 rpc_binding_set_auth_info(h,server_principal,rpc_c_protect_level_pkt_integ,
 rpc_c_authn_dce_secret,login_context,rpc_c_authz_dce,&st);

if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &st1);
fprintf(stderr, "Cannot set auth info: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

 /" rpc_string_free(&server_principal, &st); "/

printf("Making RPC call...\n");
 fflush(stdout);

for (i=1; i <=MAX_PASS; i++) {
greet_rpc(h, "Hello Server !", reply);
printf("The Greet Server said: %s\n", reply);

 fflush(stdout);
 }

/" Purge the login context "/

printf("Purging Login context\n");
 fflush(stdout);

 sec_login_purge_context(&login_context, &st);
if (st != error_status_ok) {
dce_error_inq_text(st, error_text, &st1);
fprintf(stderr, "Cannot purge login context: %s\n", error_text);

 fflush(stderr);
 exit(1);
 }

return(@);
}

 Appendix C. Greet6 ACL Manager Example 327

328 DCE Application Development Guide: Introduction and Style

 Appendix D. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 Copyright IBM Corp. 1994, 2001 329

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

 Trademarks

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

AIX BookManager CICS
CICS/ESA IBM IBMLink
IMS IMS/ESA Language Environment
Library Reader MVS MVS/ESA
OS/390 RACF Resource Link
SecureWay VTAM z/OS

330 DCE Application Development Guide: Introduction and Style

Other company, product, and service names may be trademarks or service marks of others.

Programming Interface Information

This z/OS DCE Application Development Guide: Introduction and Style documents intended Programming
Interfaces that allow the customer to write programs to obtain services of z/OS DCE.

 Appendix D. Notices 331

332 DCE Application Development Guide: Introduction and Style

 Glossary

This glossary defines technical terms and abbreviations
used in z/OS DCE documentation. If you do not find the
term you are looking for, refer to the index of the
appropriate z/OS DCE manual or view the IBM
Glossary of Computing Terms, located at:

http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

� IBM Dictionary of Computing, SC20-1699.

� Information Technology—Portable Operating
System Interface (POSIX), from the POSIX series of
standards for applications and user interfaces to
open systems, copyrighted by the Institute of
Electrical and Electronics Engineers (IEEE).

� American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by the symbol (A) after the
definition.

� Information Technology Vocabulary, developed by
Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1.SC1).

� CCITT Sixth Plenary Assembly Orange Book,
Terms and Definitions and working documents
published by the International Telecommunication
Union, Geneva, 1978.

� Open Software Foundation (OSF).

The following abbreviations indicate terms that are
related to a particular DCE service:

CDS Cell Directory Service

CICS/ESA Customer Information Control
System/ESA

DTS Distributed Time Service

GDS Global Directory Service

IMS/ESA Information Management
System/ESA

RPC Remote Procedure Call

Security Security Service

Threads Threads Service

XDS X/Open Directory Services

XOM X/Open OSI-Abstract-Data
Manipulation

A
absolute time. A point on a time scale.

abstract syntax notation one (ASN.1). A data
representation scheme that enables complicated types
to be defined and enables values of these types to be
specified.

access control list (ACL). (1) GDS: Specifies the
users with their access rights to an object. (2) Security:
Data that controls access to a protected object. An
ACL specifies the privilege attributes needed to access
the object and the permissions that may be granted, to
the protected object, to principals that possess such
privilege attributes.

access control list facility. A Security Service feature
that checks a principal’s access to an object. This
facility determines access rights by comparing the
principal’s privileges to entries in an access control list
(ACL) of an object.

access right. Synonym for permission.

accessible. Pertaining to an object whose client
possesses a valid designator or handle.

account. Data in the Registry database that allows a
principal to log in. An account is a registry object that
relates to a principal.

ACF. Attribute configuration file.

ACL. Access control list.

active context handle. RPC: A context handle in RPC
applications that the RPC has set to a non-null value
and passed back to the calling program. The calling
program supplies the active context handle in any future
calls to procedures that share the same client context.
See client context and context handle.

address. An unambiguous name, label, or number that
identifies the location of a particular entity or service.
See presentation address.

address family. A set of related communications
protocols that use a common addressing mechanism to
identify end-points; for example, the U.S. Department of
Defense Internet Protocols. Synonymous with protocol
family.

alias. Synonym for alias name.

 Copyright IBM Corp. 1994, 2001 333

alias entry. GDS: A directory entry, of object class
alias, containing information used to provide an
alternative name for an object.

alias name. (1) GDS: A name for a directory object
that consists of one or more alias entries in the
directory information tree (DIT). (2) Security: An
optional alternate for a principal’s primary name.
Synonymous with alias. The alias shares the same
UUID with the primary name.

aliasing. RPC: Pertaining to the pointing of two
pointers of the same operation at the same storage.

anonymous user. A user who is not entered in the
directory as an object and who logs in to the Global
Directory Service without giving a name and password.

APF. Authorized program facility.

API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program.

Application Support Server. Refers to the Application
Support Server/CICS and the Application Support
Server/IMS.

Application Support Server/CICS. A z/OS feature.
The server function in the Distributed Computing
Environment (DCE) that allows a client program to
access Customer Information Control System (CICS)
application programs by a remote procedure call (RPC).

Application Support Server/IMS. A z/OS feature.
The server function in the Distributed Computing
Environment (DCE) that allows a client program to
access Information Management System (IMS)
application programs by a remote procedure call (RPC).

application thread. A thread of execution created and
managed by application code. See client application
thread, local application thread, RPC thread, and server
application thread.

architecture. (1) The organizational structure of a
computer system, including the interrelationships among
its hardware and software. (2) The logical structure
and operating principles of a computer network. The
operating principles of a network include those of
services, functions, and protocols.

ASN.1. Abstract syntax notation one.

association (connection-oriented). A connection
between a client and a server.

asynchronous. Without a regular time relationship;
unexpected or unpredictable with respect to the running
of program instructions.

at-most-once semantics. RPC: A characteristic of a
procedure that restricts the procedure to being run
once, partially, or not at all. See broadcast semantics,
idempotent semantics, and maybe semantics.

attribute. (1) RPC: An Interface Definition Language
(IDL) or attribute configuration file (ACF) that conveys
information about an interface, type, field, parameter, or
operation. (2) DTS: A qualifier used with DTS
commands. DTS has four attribute categories:
characteristics, counters, identifiers, and status.
(3) XDS: Information of a particular type concerning an
object and appearing in an entry that describes the
object in the directory information base (DIB). It
denotes the attribute’s type and a sequence of one or
more attribute values, each accompanied by an integer
denoting the value’s syntax.

attribute configuration file (ACF). RPC: An optional
companion to an interface definition file that changes
how the Interface Definition Language (IDL) compiler
locally interprets the interface definition. See also
interface definition and Interface Definition Language.

Attribute Configuration Language. RPC: A high-level
declarative language that provides syntax for attribute
configuration files. See attribute configuration file.

attribute syntax. GDS: A definition of the set of
values that an attribute may assume. Attribute syntax
includes the data type, in ASN.1, and usually one or
more matching rules by which values may be
compared.

attribute type. (1) XDS: The component of an
attribute that indicates the type of information given by
that attribute. Because it is an object identifier, it is
unique among other attribute types. (2) XOM: Any of
various categories into which the client dynamically
groups values on the basis of their semantics. It is an
integer unique only within the package.

attribute value. XDS, XOM: A particular instance of
the type of information indicated by an attribute type.

authentication. In computer security, a method used
to verify the identity of a principal.

authentication level. Synonym for protection level.

authentication protocol. A formal procedure for
verifying a principal’s network identity. Kerberos is an
instance of a shared-secret authentication protocol.

Authentication Service. One of three services
provided by the Security Service: it verifies principals

334 DCE Application Development Guide: Introduction and Style

according to a specified authentication protocol. The
other Security services are the Privilege Service and the
Registry Service.

authentication surrogate. Security: A type of principal
entry in a cell’s Registry database that represents a
foreign cell. This principal shares a secret key with a
corresponding entry in the foreign cell’s Registry. The
Authentication Services of the two cells use the secret
key to exchange data about principals without either
Authentication Service having to share its private key
with the other.

authorization. (1) The determination of a principal’s
permissions with respect to a protected object. (2) The
approval of a permission sought by a principal with
respect to a protected object.

authorization protocol. A formal procedure for
establishing the authorization of principals with respect
to protected objects. Authorization protocols supported
by the Security Service include DCE authorization and
name-based authorization.

authorization service. RPC: An implementation of an
authorization protocol.

authorized program facility (APF). An MVS facility
that permits identification of programs authorized to use
restricted functions.

automatic binding method. RPC: A method of
managing the binding for a remote procedure call. It
completely hides binding management from client
application code. If the client makes a series of remote
procedure calls, the stub passes the same binding
handle with each call. See binding handle, explicit
binding method, and implicit binding method.

B
big endian. An attribute of data representation that
reflects how multi-octet data is stored. In big endian
representation, the lowest addressed octet of a
multi-octet data item is the most significant. See little
endian.

binary timestamp. An opaque 128-bit (16-octet)
structure that represents a DTS time value.

binding. RPC: A relationship between a client and a
server involved in a remote procedure call.

binding handle. RPC: A reference to a binding. See
binding information.

binding information. RPC: Information about one or
more potential bindings, including an RPC protocol
sequence, a network address, an endpoint, at least one
transfer syntax, and an RPC protocol version number.

See binding. See also endpoint, network address, RPC
protocol, RPC protocol sequence, and transfer syntax.

broadcast. A notification sent to all members within an
arbitrary grouping such as nodes in a network or
threads in a process. See also signal.

broadcast semantics. RPC: A form of idempotent
semantics that indicates that the operation is always
broadcast to all host systems on the local network,
rather than delivered to a specific system. An operation
with broadcast semantics is implicitly idempotent.
Broadcast semantics are supported only by
connectionless protocols. See at-most-once semantics,
idempotent semantics, and maybe semantics.

Browser. CDS: A Motif-based program that lets users
view the contents and structure of a cell name space.

C
C interface. The interface that is defined at a level
that depends on the variant of C standardized by ANSI.

cache. (1) CDS: The information that a CDS clerk
stores locally to optimize name lookups. The cache
contains attribute values resulting from previous
lookups, as well as information about other
clearinghouses and namespaces. (2) Security:
Contains the credentials of a principal after the DCE
login. (3) GDS: See DUA cache.

callback. A role reversal technique used by the server
to make a request back to the original client. For
example, the server may request state information
(such as sequence numbers) needed to provide reliable
data transfer or identity information needed for an
authenticated RPC call.

call handle. An RPC data structure used by the RPC
runtime to maintain the state information for an RPC
call. A client call handle is maintained by the client, and
a corresponding server call handle is maintained by the
server.

call queue. RPC: A FIFO queue used by an RPC
server to hold incoming calls when the server is already
running its maximum number of concurrent calls.

call thread. RPC: A thread created by an RPC
server’s runtime to run remote procedures. When
engaged by a remote procedure call, a call thread
temporarily forms part of the RPC thread of the call.
See application thread and RPC thread.

cancel. (1) Threads: A mechanism by which a thread
informs either itself or another thread to stop the thread
as soon as possible. If a cancel arrives during an
important operation, the canceled thread may continue
until it can end the thread in a controlled manner.

 Glossary 335

(2) RPC: A mechanism by which a client thread notifies
a server thread (the canceled thread) to end the thread
as soon as possible. See also thread.

CCITT. Consultative Committee on International
Telegraphy and Telephone

CDS. Cell Directory Service.

CDS clerk. The software that provides an interface
between client applications and CDS servers.

CDS control program (CDSCP). A command
interface that CDS administrators use to control CDS
servers and clerks and manage the name space and its
contents. See also manager.

CDSCP. CDS control program.

cell. The basic unit of operation in the distributed
computing environment. A cell is a group of users,
systems, and resources that are grouped around a
common purpose and that share common DCE
services.

Cell Directory Service (CDS). A DCE component. A
distributed replicated database service that stores
names and attributes of resources located in a cell.
CDS manages a database of information about the
resources in a group of machines called a DCE cell.

cell-relative name. Synonym for local name.

central processing unit (CPU). The part of a
computer that includes the circuits that control the
interpretation and processing of instructions.

child process. A process, created by a parent
process, that shares the resources of the parent
process to carry out a request. Contrast with parent
process. See also fork.

CICS. Customer Information Control System.

class. A category into which objects are placed on the
basis of their purpose and internal structure.

clearinghouse. CDS: A collection of directory replicas
on one CDS server. A clearinghouse takes the form of
a database file. It can exist only on a CDS server
node; it cannot exist on a node running only CDS clerk
software. Usually only one clearinghouse exists on a
server node.

clerk. (1) DTS: A software component that
synchronizes the clock for its client system by
requesting time values from servers, calculating a new
time from the values, and supplying the computed time
to client applications. (2) CDS: A software component
that receives CDS requests from a client application,
ascertains an appropriate CDS server to process the

requests, and returns the results of the requests to the
client application.

client. A computer or process that accesses the data,
services, or resources of another computer or process
on the network. Contrast with server.

client application thread. RPC: A thread executing
client application code that makes one or more remote
procedure calls. See application thread, local
application thread, RPC thread, and server application
thread.

client binding information. Information about a
calling client provided by the client runtime to the server
runtime, including the address where the call originated,
the RPC protocol used for the call, the requested object
UUID, and client authentication information. See
binding information and server binding information.

client context. RPC: The state within an RPC server
generated by a set of remote procedures and
maintained across a series of calls for a particular
client. See context handle. See also manager.

client stub. RPC: The surrogate code for an RPC
interface that is linked with and called by the client
application code. In addition to general operations such
as marshalling data, a client stub calls the RPC runtime
to perform remote procedure calls and, optionally, to
manage bindings. See server stub.

client/server model. A form of computing where one
system, the client, requests something, and another
system, the server, responds.

clock. The combined hardware interrupt timer and
software register that maintains the system time.

code page. (1) A table showing codes assigned to
character sets. (2) An assignment of graphic
characters and control function meanings to all code
points. (3) Arrays of code points representing
characters that establish numeric order of characters.
[OSF] (4) A particular assignment of hexadecimal
identifiers to graphic elements. (5) Synonymous with
code set. (6) See also code point, extended character.

code set. Synonym for code page.

collapse. CDS: To remove the contents of a directory
from the display (close it) using the CDS Browser. To
collapse an open directory, double-click on its icon.
Double-clicking on a closed directory expands it.
Contrast with expand.

communications link. RPC: A network pathway
between an RPC client and server that uses a valid
combination of transport and network protocols that are
available to both the client and server RPC run times.

336 DCE Application Development Guide: Introduction and Style

compatible server. RPC: A server that offers the
requested RPC interface and RPC object and that is
accessible over a valid combination of network and
transport protocols. It is supported by both the client
and server RPC run times.

computed time. DTS: The resulting time after a DTS
clock synchronization. The time value that the clerk or
server process computes according to the values it
receives from several servers.

condition variable. Threads: A synchronization object
used in conjunction with a mutex. It allows a thread to
suspend running until some condition is true.

conformant array. RPC: An array whose size is
determined at runtime. A structure containing a
conformant array as a field is a conformant structure.

connectionless protocol. RPC: A transport protocol
such as UDP that does not require a connection to be
established prior to data transfer. Contrast with
connection-oriented protocol.

connection-oriented protocol. RPC: An RPC
protocol that runs over a connection-based transport
protocol. It is a connection-based, reliable, virtual-circuit
transport protocol, such as TCP. Contrast with
connectionless protocol.

Consultative Committee on International Telegraphy
and Telephone (CCITT). A United Nations Specialized
Standards group whose membership includes common
carriers concerned with devising and proposing
recommendations for international telecommunications
representing alphabets, graphics, control information,
and other fundamental information interchange issues.

context handle. RPC: A reference to state (client
context) maintained across remote procedure calls by a
server on behalf of a client. See client context.

control access. CDS: An access right that grants
users the ability to change the access control on a
name and to perform other powerful management tasks,
such as replicate a directory or move a clearinghouse.

control task. The parent process of the DCE
daemons in the DCEKERN address space. All requests
to start or stop DCE daemons are handled by the
Control Task.

conversation key. Synonym for session key.

copy. GDS, XDS: Either a copy of an entry stored in
other DSAs through bilateral agreement or a locally and
dynamically stored copy of an entry resulting from a
request (a cache copy).

courier. DTS: A local server that requests a time value
from a randomly selected global server. The time value
returned is used for synchronization.

CPU. central processing unit

creation timestamp (CTS). An attribute of all CDS
clearinghouses, directories, soft links, child pointers,
and object entries that contains a unique value
reflecting the date and time the name was created. The
timestamp consists of two parts; a time portion and a
portion containing the system identifier of the node on
which the name was created. These two parts
guarantee uniqueness among timestamps generated on
different nodes.

credentials. Security: A general term for privilege
attribute data that has been certified by a trusted
privilege certification authority.

cross-linking information. In order for z/OS DCE to
provide RACF-DCE interoperability and single sign-on
to DCE, DCE provides utilities (see mvsexpt and
mvsimpt) to incorporate into RACF the information that
associates a z/OS-RACF user ID with a DCE principal's
identifying information and the DCE principal's UUID
with the corresponding z/OS-RACF user ID. The
information is placed in a RACF DCE segment and the
RACF general resource class, DCEUUIDS. This is
called cross-linking information and is what allows
interoperability and single sign-on to work. See also
interoperability and single sign-on.

CTS. Creation timestamp.

Customer Information Control System (CICS). An
IBM licensed program that enables transactions entered
at remote terminals to be processed concurrently by
user-written application programs. It includes facilities
for building, using, and maintaining databases.

customized binding handle. RPC: A user-defined
data structure from which a primitive binding handle can
be derived by user-defined routines in application code.
See primitive binding handle.

D
daemon. (1) A long-lived process that runs
unattended to perform continuous or periodic
system-wide functions such as network control Some
daemons are triggered automatically to perform their
task; others operate periodically. An example is the
cron daemon, which periodically performs the tasks
listed in the crontab file. Many standard dictionaries
accept the spelling demon. (2) A DCE server process.

Data Encryption Standard (DES). The National
Institute of Standards and Technology (NIST) Data
Encryption Standard, adopted by the U.S. government

 Glossary 337

as Federal Information Processing Standard (FIPS)
Publication 46, which allows only hardware
implementations of the data encryption algorithm.

data limit. RPC: A value that specifies which elements
of an array are transmitted during a remote procedure
call.

datagram. RPC: A network data packet that is
independent of all other packets and does not
guarantee delivery or sequentiality.

datagram protocol. RPC: A datagram-based transport
protocol, such as User Datagram Protocol (UDP), that
runs over a connectionless transport protocol.

DBCS. Double-byte character sets

DCE. Distributed Computing Environment.

DCEKERN. The address space that contains the DCE
daemons.

decrypt. Security: To decipher data.

default element. RPC: An optional profile element that
contains a nil interface identifier and object UUID and
that specifies a default profile. Each profile can contain
only one default element. See default profile, profile,
and profile element.

default profile. RPC: A backup profile referred to by
the default element in another profile. The NSI import
and lookup operations use the default profile, if present,
whenever a search based on the current profile fails to
find any useful binding information. See default
element and profile.

DES. Data Encryption Standard.

descriptor. (1) XOM: The means by which the client
and service exchange an attribute value and the
integers that denote its representation, type, and syntax.
(2) XDS: A defined data structure that is used to
represent an OM attribute type and a single value.

destructor. A user-supplied routine that is expected to
finalize and then deallocate a per-thread context value.

DFS. Distributed File Service.

DIB. Directory information base.

directory. (1) A logical unit for storing entries under
one name (the directory name) in a CDS namespace.
Each physical instance of a directory is called a replica.
(2) A collection of open systems that cooperates to hold
a logical database of information about a set of objects
in the real world.

directory information base (DIB). GDS: The
complete set of information to which the directory
provides access, which includes all of the pieces of
information that can be read or manipulated using the
operations of the directory.

directory information tree (DIT). GDS: The directory
information base (DIB) considered as a tree, whose
vertices (other than the root) are the directory entries.

directory schema. GDS: The set of rules and
constraints concerning directory information tree (DIT)
structure, object class definitions, attribute types, and
syntaxes that characterize the directory information
base (DIB).

Directory Service. A DCE component. The Directory
Service is a central repository for information about
resources in a distributed system. See Cell Directory
Service and Global Directory Service.

directory system. GDS: A system for managing a
directory, consisting of one or more DSAs. Each DSA
manages part of the DIB.

directory system agent (DSA). GDS: An open
systems interconnection (OSI) application process that
is part of the directory.

directory system protocol (DSP). GDS: The protocol
used by a directory system agent (DSA) to access
another DSA. The DSA runs in the GDS server
machine and manages the GDS data base.

directory user agent (DUA). GDS: An open systems
interconnection (OSI) application process that
represents a user accessing the directory.

discriminator. RPC: The data item that determines
which union case is currently used.

distributed computing. A type of computing that
allows computers with different hardware and software
to be combined on a network, to function as a single
computer, and to share the task of processing
application programs.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that supports
the development, use, and maintenance of distributed
applications. DCE is independent of the operating
system and network; it provides interoperability and
portability across heterogeneous platforms.

Distributed File Service (DFS). A DCE component.
DFS joins the local file systems of several file server
machines making the files equally available to all DFS
client machines. DFS allows users to access and share
files stored on a file server anywhere in the network,
without having to consider the physical location of the
file. Files are part of a single, global name space, so

338 DCE Application Development Guide: Introduction and Style

that a user can be found anywhere in the network by
means of the same name.

distributed service. A DCE service that is used
mainly by administrators to manage a distributed
environment. These services include DTS, Security,
and Directory.

Distributed Time Service (DTS). A DCE component.
It provides a way to synchronize the times on different
hosts in a distributed system.

DIT. Directory information tree.

DNS. Domain Name System.

Domain Name System (DNS). A hierarchical scheme
for giving meaningful names to hosts in a TCP/IP
network.

Double-byte character sets (DBCS). A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese. and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
coded character sets.

domain name. A unique network name that is
associated with a network’s unique address.

DSA. Directory system agent.

DSP. Directory system protocol.

DTS. Distributed Time Service.

DTS entity. DTS: The server or clerk software on a
system.

DUA. Directory user agent.

DUA cache. GDS: The part of the DUA that stores
information to optimize name lookups. Each cache
contains copies of recently accessed object entries as
well as information about DSAs in the directory.

dynamic endpoint. RPC: An endpoint that is
generated by the RPC runtime for an RPC server when
the server registers its protocol sequences. It expires
when the server stops running. See endpoint and
well-known endpoint.

E
effective permissions. Security: The permissions
granted to a principal as a result of a masking
operation.

element. RPC: Any of the bits of a bit string, the
octets of an octet string, or the octets by means of

which the characters of a character string are
represented.

encrypt. To systematically encode data so that it
cannot be read without knowing the coding key.

encryption key. A value used to encrypt data so that
only possessors of the encryption key can decipher it.

endian. An attribute of data representation that reflects
how certain multi-octet data is stored in memory. See
big endian and little endian.

endpoint. RPC: An address of a specific server
instance on a host.

endpoint map. RPC: A database local to a node
where local RPC servers register binding information
associated with their interface identifiers and object
identifiers. The endpoint map is maintained by the
endpoint map service of the DCE daemon.

endpoint map service. RPC: A service that maintains
a system’s endpoint map for local RPC servers. When
an RPC client makes a remote procedure call using a
partially bound binding handle, the endpoint map
service looks up the endpoint of a compatible local
server. See endpoint map.

entity. (1) CDS: Any manageable element through the
CDS namespace. Manageable elements include
directories, object entries, servers, replicas, and clerks.
The CDS control program (CDSCP) commands are
based on directives targeted for specific entities.
(2) DTS: See DTS entity.

entry. GDS, XDS: The part of the DIB that contains
information relating to a single directory object. Each
entry consists of directory attributes.

entry point vector (EPV). RPC: A list of addresses for
the entry points of a set of remote procedures that
starts the operations declared in an interface definition.
The addresses are listed in the same order as the
corresponding operation declarations.

ENV. environment variable

envelope. Security: Used to transport authentication
data and conversation keys between the security server
and principals.

environment variable (ENV). A variable included in
the current software environment that is available to any
called program that requests it.

EPV. Entry point vector.

exception. (1) An abnormal condition such as an I/O
error encountered in processing a data set or a file.
(2) One of five types of errors that can occur during a

 Glossary 339

floating-point exception. These are valid operation,
overflow, underflow, division by zero, and inexact
results. [OSF] (3) Contrast with interrupt, signal.

executor thread. See call thread.

expand. CDS: To display the contents of (open) a
directory using the CDS Browser. A directory that is
closed can be expanded by double-clicking on its icon.
Double-clicking on an expanded directory collapses it.
Contrast with collapse.

expiration age. RPC: The amount of time that a local
copy of name service data from a NSI attribute remains
unchanged before a request from an RPC application
for the attribute requires its updating. See also NSI
attribute.

explicit binding method. RPC: The explicit method of
managing the binding for a remote procedure call in
which a remote procedure call passes a binding handle
as its first parameter. The binding handle is initialized
in the application code. See automatic binding method,
binding handle, and implicit binding method.

export. (1) RPC: To place the server binding
information associated with an RPC interface or a list of
object UUIDs or both into an entry in a name service
database. (2) To provide access information for an
RPC interface. Contrast with unexport.

F
fault. RPC: An exception condition, occurring on a
server, that is transmitted to a client.

filter. An assertion about the presence or value of
certain attributes of an entry to limit the scope of a
search.

FIFO. first-in-first-out

first-in-first-out (FIFO). A queueing technique in
which the next item to be retrieved is the item that has
been in the queue the longest time.

fixed array. RPC: The size of the array is defined in
the IDL. All of the data in the array is transmitted
during a remote procedure call.

foreign cell. A cell other than the one to which the
local machine belongs. A foreign cell and its binding
information are stored in either GDS or the Domain
Name System (DNS). The act of contacting a foreign
cell is called intercell. Contrast with local cell.

fork. To create and start a child process. Forking is
similar to creating an address space and attaching. It
creates a copy of the parent process, including open file
descriptors.

full name. CDS: The complete specification of a CDS
name, including all parent directories in the path from
the cell root to the entry being named.

full pointer. RPC: A pointer without the restrictions of
a reference pointer.

fully bound binding handle. RPC: A server binding
handle that contains a complete server address
including an endpoint. Contrast with partially bound
binding handle.

G
General-Use Programming Interface (GUPI). An
interface, with few restrictions, for use in
customer-written programs. The majority of
programming interfaces are general-use programming
interfaces, and are appropriate in a wide variety of
application programs. A general-use programming
interface requires the knowledge of the externals of the
interface and perhaps the externals of related
programming interfaces. Knowledge of the detailed
design or implementation of the software product is not
required.

GDA. Global Directory Agent.

GDS. Global Directory Service.

Global Directory Agent (GDA). A DCE component
that makes it possible for the local CDS to access
names in foreign cells. The GDA provides a connection
to foreign cells through either the GDS or the Domain
Name System (DNS).

Global Directory Service (GDS). A DCE component.
A distributed replicated directory service that provides a
global namespace that connects the local DCE cells
into one worldwide hierarchy. DCE users can look up a
name outside a local cell with GDS.

global name. A name that is universally meaningful
and usable from anywhere in the DCE naming
environment. The prefix /... indicates that a name is
global.

global server. DTS: A server that provides its clock
value to courier servers on other cells, or to DTS
entities that have failed to obtain the specified number
of servers locally.

group. (1) RPC: A name service entry that
corresponds to one or more RPC servers that offer
common RPC interfaces, RPC objects, or both. A
group contains the names of the server entries, other
groups, or both that are members of the group. See
NSI group attribute. (2) Security: Data that associates

340 DCE Application Development Guide: Introduction and Style

a named set of principals that can be granted common
access rights. See subject identifier.

group member. (1) RPC: A name service entry
whose name occurs in the group. (2) Security: A
principal whose name appears in a security group. See
group.

GUPI. General-Use Programming Interface.

H
handle. RPC: An opaque reference to information.
See binding handle, context handle, interface handle,
name service handle, and thread handle.

heterogeneous. Pertaining to a collection of dissimilar
host computers such as those from different
manufacturers. Contrast with homogeneous.

home cell. Synonym for local cell.

homogeneous. Pertaining to a collection of similar
host computers such as those of one model or one
manufacturer. Contrast with heterogeneous.

host ID. Synonym for network address.

I
idempotent semantics. RPC: A characteristic of a
procedure in which running it more than once with
identical input always produces the same result, without
any undesirable side effects. For example, a procedure
that calculates the square root of a number is
idempotent. DCE RPC supports maybe and broadcast
semantics as special forms of idempotent operations.
See at-most-once semantics, broadcast semantics, and
maybe semantics.

IDL. Interface Definition Language.

IDL compiler. RPC: A compiler that processes an
RPC interface definition and an optional attribute
configuration file (ACF) to generate client and server
stubs, and header files See Interface Definition
Language.

implicit binding method. RPC: The implicit method of
managing the binding for a remote procedure call in
which a global variable in the client application holds a
binding handle that the client stub passes to the RPC
runtime. See automatic binding method, binding
handle, and explicit binding method.

import. (1) RPC: To obtain binding information from a
name service database about a server that offers a
given RPC interface by calling the RPC NSI import
operation. (2) RPC: To incorporate constant, type, and

import declarations from one RPC interface definition
into another RPC interface definition by means of the
IDL import statement.

import context. The context set up by the client to
import compatible binding handles from the name
space. Name service interfaces (NSI) are used to set
up and free the import context.

IMS. Information Management System.

inaccuracy. DTS: The bounded uncertainty of a clock
value as compared to a standard reference.

Information Management System (IMS). A database
and data communication system capable of managing
complex databases and networks in virtual storage.

inquiry context. The context set up by the client,
server, or management applications to view the
elements in a name space profile. Name service
interfaces (NSI) are used to set up and free the inquiry
context.

instance. XOM: An object in the category represented
by a class.

instance UUID. RPC: An object Universal Unique
Identifier (UUID) that is associated with a single server
instance and is provided to clients to identify that
instance unambiguously. See object UUID and server
instance.

integrity. RPC: A protection level that may be
specified in secure RPC communications to ensure that
data transferred between two principals has not been
changed in transit.

interface. RPC: A shared boundary between two or
more functional units, defined by functional
characteristics, signal characteristics, or other
characteristics, as appropriate. The concept includes
the specification of the connection of two devices
having different functions. See RPC interface.

interface definition. RPC: A description of an RPC
interface written in the DCE Interface Definition
Language (IDL). See RPC interface.

Interface Definition Language (IDL). A high-level
declarative language that provides syntax for interface
definitions.

interface handle. RPC: A reference in code to an
interface specification. See binding handle and
interface specification.

interface identifier. RPC: A string containing the
interface Universal Unique Identifier (UUID) and major
and minor version numbers of a given RPC interface.
See RPC interface.

 Glossary 341

interface specification. RPC: An opaque data
structure that is generated by the DCE IDL compiler
from an interface definition. It contains identifying and
descriptive information about an RPC interface. See
interface definition, interface handle, and RPC interface.

interface UUID. RPC: The Universal Unique Identifier
(UUID) generated for an RPC interface definition using
the UUID generator. See interface definition and RPC
interface.

International Organization for Standardization
(ISO). An international body composed of the national
standards organizations of 89 countries. ISO issues
standards on a vast number of goods and services
including networking software.

Internet address. The 32-bit address assigned to
hosts in a TCP/IP network.

Internet Protocol (IP). In TCP/IP, a protocol that
routes data from its source to its destination in an
Internet environment. IP provides the interface from the
higher level host-to-host protocols to the local network
protocols. Addressing at this level is usually from host
to host.

interoperability. The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units.

interval. DTS: The combination of a time value and
the inaccuracy associated with it; the range of values
represented by a combined time and inaccuracy
notation. As an example, the interval 08:00.00I00:05:00
(eight o’clock, plus or minus five minutes) contains the
time 07:57.00.

IP. Internet Protocol

ISO. International Organization for Standardization

J
junction. A specialized entry in the DCE namespace
that contains binding information to enable
communications between different DCE services.

K
Kerberos. The authentication protocol used to carry
out DCE private key authentication. Kerberos was
developed at the Massachusetts Institute of Technology.

key. A value used to encrypt and decrypt data.

key file. A file that contains encryption keys for
noninteractive principals.

key management facility. A Security Service facility
that enables noninteractive principals to manage their
secret keys.

L
LAN. Local area network.

layer. In network architecture, a group of services,
functions, and protocols that is complete from a
conceptual point of view, that is one out of a set of
hierarchically arranged groups, and that extends across
all systems that conform to the network architecture.

leaf entry. A directory entry that has no subordinates.
It can be an alias entry or an object entry.

LFS. local file system

listener thread. Created by RPC to listen on all
TCP/IP sockets for calls coming into the client for the
datagram protocol and for calls coming into the server
for datagram and connection-oriented protocols.

little endian. An attribute of data representation that
reflects how multi-octet data is stored. In little endian
representation, the lowest addressed octet of a
multi-octet data item is the least significant. See big
endian.

liveness. Context handle and related maintenance
functions that maintain context on behalf of clients even
during periods of nominal client inactivity.

local. (1) Pertaining to a device directly connected to
a system without the use of a communication line.
(2) Pertaining to devices that have a direct, physical
connection. Contrast with remote.

local application thread. RPC: An application thread
that runs within the confines of one address space on a
local system and passes control exclusively among
local code segments. See application thread, client
application thread, RPC thread and server application
thread.

local area network (LAN). A network in which
communication is limited to a moderate-sized
geographical area (1 to 10 km) such as a single office
building, warehouse, or campus, and which does not
generally extend across public rights-of-way. A local
network depends on a communication medium capable
of moderate to high data rate (greater than 1Mbps), and
normally operates with a consistently low error rate.

342 DCE Application Development Guide: Introduction and Style

local cell. The cell to which the local machine
belongs. Synonymous with home cell. Contrast with
foreign cell.

local file system (LFS). An organized collection of
data in the form of a root directory and its subdirectories
and files. An LFS supports special features useful in a
distributed environment: the ability to replicate data; to
log file system data, enabling quick recovery after a
crash; to simplify administration by dividing the file
system into easily managed units called filesets; and to
associate access control lists (ACLs) with files and
directories. An LFS is located on a disk that is
physically attached to a machine In other file systems, a
single disk partition contains only one file system. In
DCE LFS an aggregate can contain multiple file
systems (filesets). See also access control list (ACL).

local name. A name that is meaningful and usable
only within the cell where an entry exists. The local
name is a shortened form of a global name. Local
names begin with the prefix /.: and do not contain a cell
name. Synonymous with cell-relative name.

local server. DTS: A server that synchronizes with its
peers and provides its clock value to other servers and
clerks in the same network.

local type. RPC: A type named in a represent_as
clause and used by application code to manipulate data
that is passed in a remote procedure call as a network
type. See network type.

logical unit (LU). A host port through which a user
gains access to the services of a network.

login facility. A Security Service facility that enables a
principal to establish its identity.

LU. Logical unit.

M
manager. RPC: A set of remote procedures that
implement the operations of an RPC interface and that
can be dedicated to a given type of object. See also
object and RPC interface.

manager entry point vector. RPC: The runtime code
on the server side uses this entry point vector to
dispatch incoming remote procedure calls. See entry
point vector and manager.

manager thread. See call thread.

marshalling. RPC: The process by which a stub
converts local arguments into network data and
packages the network data for transmission. Contrast
with unmarshalling.

mask. (1) A pattern of characters used to control the
retention or deletion of portions of another pattern of
characters (2) Security: Used to establish maximum
permissions that can then be applied to individual ACL
entries. (3) GDS: The administration screen interface
menus.

master replica. CDS: The first instance of a specific
directory in the namespace. After copies of the
directory have been made, a different replica can be
designated as the master, but only one master replica
of a directory can exist at a time. CDS can create,
update, and delete object entries and soft links in a
master replica.

maybe semantics. RPC: A form of idempotent
semantics that indicates that the caller neither requires
nor receives any response or fault indication for an
operation, even though there is no guarantee that the
operation was completed. An operation with maybe
semantics is implicitly idempotent and lacks output
parameters. See at-most-once semantics, broadcast
semantics, and idempotent semantics.

mutex. Mutual exclusion. A read/write lock that grants
access to only a single thread at any one time. A
mutex is often used to ensure that shared variables are
always seen by other threads in a consistent way.

mvsexpt. One of two (the other is mvsimpt) utilities
used to automate much of the administrator's work in
creating the cross-linking information for DCE-RACF
interoperability. The mvsexpt utility creates the
cross-linking information in the RACF database from
information in the DCE registry. See also cross-linking
information, interoperability, and single sign-on.

mvsimpt. One of two (the other is mvsexpt) utilities
used to automate much of the administrator's work in
creating the cross-linking information for DCE-RACF
interoperability. The mvsimpt utility creates DCE
principals from information obtained from the RACF
database. See also cross-linking information,
interoperability, and single sign-on.

N
name. GDS, CDS: A construct that singles out a
particular (directory) object from all other objects. A
name must be unambiguous (denote only one object);
however, it need not be unique (be the only name that
unambiguously denotes the object).

name service. A central repository of named
resources in a distributed system. In DCE, this is the
same as Directory Service.

name service handle. RPC: An opaque reference to
the context used by the series of next operations called

 Glossary 343

during a specific name service interface (NSI) search or
inquiry.

name service interface (NSI). RPC: A part of the
application program interface (API) of the RPC run time.
NSI routines access a name service, such as CDS, for
RPC applications.

namespace. CDS: A complete set of CDS names that
one or more CDS servers look up, manage, and share.
These names can include directories, object entries,
and soft links.

NCA. Network Computing Architecture.

NDR. Network Data Representation.

network. A collection of data processing products
connected by communications lines for exchanging
information between stations.

network address. An address that identifies a specific
host on a network. Synonymous with host ID.

Network Computing Architecture (NCA). RPC: An
architecture for distributing software applications across
heterogeneous collections of networks, computers, and
programming environments using UDP. NCA specifies
part of the DCE Remote Procedure Call architecture.

network data. RPC: Data represented in a format
defined by a transfer syntax. See also transfer syntax.

Network Data Representation (NDR). RPC: The
transfer syntax defined by the Network Computing
Architecture. See transfer syntax.

network descriptor. RPC: The identifier of a potential
network channel, such as a UNIX socket.

network protocol. A communications protocol from
the Network Layer of the Open Systems Interconnection
(OSI) network architecture, such as the Internet
Protocol (IP).

Network Time Protocol (NTP). A clock
synchronization protocol commonly used on an Internet.

network type. RPC: A type defined in an interface
definition and referenced in a represent_as clause that
is converted into a local type for manipulation by
application code. See local type.

node. (1) An endpoint of a link, or a junction common
to two or more links in a network. Nodes can be
preprocessors, controllers, or workstations, and they
can vary in routing and other functional capabilities.
(2) In network topology, the point at an end of a
branch. It is usually a physical machine.

non-idempotent. An RPC call attribute type describing
an RPC call that must run no more than once. Before
running a non-idempotent call, servers and clients verify
each other's identity using one of the simple
conversation callback operations provided by a set of
conversation manager routines for the datagram RPC
protocol service.

null time provider. The daemon that fetches the time
from the hardware clock of the DCE host for DTS.

NSI. Name service interface.

NSI attribute. RPC: An RPC-defined attribute of a
name service entry used by the RPC name service
interface. A name service interface (NSI) attribute
stores one of the following: binding information, object
Universal Unique Identifiers (UUIDs), a group, or a
profile. See NSI binding attribute, NSI group attribute,
NSI object attribute, and NSI profile attribute.

NSI binding attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry; the binding
attribute stores binding information for one or more
interface identifiers offered by an RPC server and
identifies the entry as an RPC server entry. See
binding information and NSI object attribute. See also
server entry.

NSI group attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
entry names of the members of an RPC group and
identifies the entry as an RPC group. See group.

NSI object attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores the
object UUIDs of a set of RPC objects. See object.

NSI profile attribute. RPC: An RPC-defined attribute
(NSI attribute) of a name service entry that stores a
collection of RPC profile elements and identifies the
entry as an RPC profile. See profile.

NTP. Network Time Protocol.

NULL. In the C language, a pointer that does not point
to a data object.

O
object. (1) A data structure that implements some
feature and has an associated set of operations.
(2) RPC: For RPC applications, anything that an RPC
server defines and identifies to its clients using an
object Universal Unique Identifier (UUID). An RPC
object is often a physical computing resource such as a
database, directory, device, or processor. Alternatively,
an RPC object can be an abstraction that is meaningful
to an application, such as a service or the location of a
server. See object UUID. (3) XDS: Anything in the

344 DCE Application Development Guide: Introduction and Style

world of telecommunications and information processing
that can be named and for which the directory
information base (DIB) contains information. (4) XOM:
Any of the complex information objects created,
examined, changed, or destroyed by means of the
interface.

object class. GDS, CDS: An identified family of
objects that share certain characteristics. An object
class can be specific to one application or shared
among a group of applications. An application
interprets and uses an entry’s class-specific attributes
based on the class of the object that the entry
describes.

object class table (OCT). A recurring attribute of the
directory schema with the description of the object
classes permitted.

object entry. CDS: The name of a resource (such as
a node, disk, or application) and its associated
attributes, as stored by CDS. CDS administrators,
client application users, or the client applications
themselves can give a resource an object name. CDS
supplies some attribute information (such as a creation
timestamp) to become part of the object, and the client
application may supply more information for CDS to
store as other attributes. See entry.

object identifier (OID). A value (distinguishable from
all other such values) that is associated with an
information object. It is formally defined in the CCITT
X.208 standard.

object management (OM). The creation, examination,
change, and deletion of potentially complex information
objects.

object name. CDS: A name for a network resource.

object UUID. RPC: The Universal Unique Identifier
(UUID) that identifies a particular RPC object. A server
specifies a distinct object UUID for each of its RPC
objects. To access a particular RPC object, a client
uses the object UUID to find the server that offers the
object. See object.

octal. In reference to a selection, choice or condition
that has eight possible different values or states. In
reference to a fixed-radix numeration having a radix of
eight.

OCT. Object class table.

octet. A byte that consists of eight bits.

OID. Object identifier.

OM. Object management.

OM attribute. XOM: An object management (OM)
attribute consists of one or more values of a particular
type (and therefore syntax).

opaque. A datum or data type whose contents are not
visible to the application routines that use it.

Open Software Foundation (OSF). A nonprofit
research and development organization set up to
encourage the development of solutions that allow
computers from different vendors to work together in a
true open-system computing environment.

open system. A system whose characteristics comply
with standards made available throughout the industry
and that can be connected to other systems complying
with the same standards.

open systems interconnection (OSI). The
interconnection of open systems in accordance with
standards of the International Organization for
Standardization (ISO) for the exchange of information.

operation. (1) GDS: Processing performed within the
directory to provide a service, such as a read operation.
(2) RPC: The task performed by a routine or procedure
that is requested by a remote procedure call.

organization. (1) The third field of a subject identifier.
(2) Security: Data that associates a named set of users
who can be granted common access rights that are
usually associated with administrative policy.

orphaned call. RPC: A call running in an RPC server
after the client that started the call fails or loses
communication with the server.

OSF. Open Software Foundation.

OSI. Open systems interconnection

P
PAC. Privilege attribute certificate.

package. XOM: A specified group of related object
management (OM) classes, denoted by an object
identifier.

packet. (1) In data communication, a sequence of
binary digits, including data and control signals, that is
transmitted and switched as a composite whole. [1]
The data, call control signals, and error control
information are arranged in a specific format. (2) See
call-accepted packet, call-connected packet, call-request
packet. See clear-confirmation packet, clear-indication
packet, clear-request packet. See data packet,
incoming-call packet.

 Glossary 345

parent directory. CDS: Any directory that has one or
more levels of directories beneath it in a cell name
space. A directory is the parent of any directory
immediately beneath it in the hierarchy.

parent process. A process created to carry out a
program. The parent process in turn creates child
processes to process requests. Contrast with child
process.

partially bound binding handle. RPC: A server
binding handle that contains an incomplete server
address lacking an endpoint. Contrast with fully bound
binding handle.

Partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data.

password. A secret string of characters shared
between a computer system and a user. The user must
specify the character string to gain access to the
system.

PCS. Portable Character Set.

PDS. Partitioned data set

peer trust. A type of trust relationship established
between two cells by means of a secret key shared by
authentication surrogates maintained by the two cells.
A peer trust relationship enables principals in one cell to
communicate securely with principals in the other.

permission. (1) The modes of access to a protected
object. The number and meaning of permissions with
respect to an object are defined by the access control
list (ACL) Manager of the object. (2) GDS: One of five
groups that assigns modes of access to users: MODIFY
PUBLIC, READ STANDARD, MODIFY STANDARD,
READ SENSITIVE, or MODIFY SENSITIVE.
Synonymous with access right. See also access control
list.

person. See principal.

pickle. A type of data encoding. When a Remote
Procedure Call (RPC) sends data between a client and
a server, it serializes the user's data structures by using
the IDL Encoding Services (ES). This serialization
scheme for encoding and decoding data is informally
called pickling,

ping. Utility in TCP/IP which is used to test if a
destination host can be reached by sending test
packets and waiting for a reply.

In the RPC control program, a command to test if a
server is listening.

pipe. (1) RPC: A mechanism for passing large
amounts of data in a remote procedure call. (2) The
data structure that represents this mechanism.

plaintext. The input to an encryption function or the
output of a decryption function. Encryption transforms
plaintext to ciphertext and decryption transforms
ciphertext into plaintext.

platform. The operating system environment in which
a program runs.

port. (1) Part of an Internet Protocol (IP) address
specifying an endpoint. (2) To make the programming
changes necessary to allow a program that runs on one
type of computer to run on another type of computer.

Portable Character Set. A set of characters to enable
internationalization. A character set used by DCE to
enable word wide connectivity by ensuring that a
minimum group of characters is supported in DCE. All
DCE RPC clients and servers are required to support
the DCE PCS.

position (within a string). XOM: The ordinal position
of one element of a string relative to another.

position (within an attribute). XOM: The ordinal
position of one value relative to another.

potential binding. RPC: A specific combination of an
RPC protocol sequence, RPC protocol major version,
network address, endpoint, and transfer syntax that an
RPC client can use to establish a binding with an RPC
server. See binding. See also endpoint, network
address, RPC protocol, RPC protocol sequence, and
transfer syntax.

predicate. A Boolean logic term denoting a logical
expression that determines the state of some variables.
For example, a predicate can be an expression stating
that variable A must have the value 3. The control
expression used in conjunction with condition variables
is based on a predicate. A condition variable can be
used to wait for some predicate to become true, for
example, to wait for something to be in a queue.

presentation address. An unambiguous name that is
used to identify a set of presentation service access
points. Loosely, it is the network address of an open
systems interconnection (OSI) service.

presented type. RPC: For data types with the
Interface Definition Language (IDL) transmit_as
attribute, the data type that clients and servers
manipulate. Stubs invoke conversion routines to
convert the presented type to a transmitted type, which
is passed over the network. See transmitted type.

primary name. The string name of an object to which
any aliases for that object refer. The DCE refers to

346 DCE Application Development Guide: Introduction and Style

objects by their primary names, although DCE users
may refer to them by their aliases.

primitive binding handle. RPC: A binding handle
whose data type in Interface Definition Language (IDL)
is handle_t and in application code is
rpc_binding_handle_t. See customized binding
handle.

principal. Security: An entity that can communicate
securely with another entity. In the DCE, principals are
represented as entries in the Registry database and
include users, servers, computers, and authentication
surrogates.

privacy. RPC: A protection level that encrypts RPC
argument values. in secure RPC communications.

private key. See secret key.

privilege attribute. Security: An attribute of a principal
that may be associated with a set of permissions. DCE
privilege attributes are identity-based and include the
principal’s name, group memberships, and local cell.

privilege attribute certificate (PAC). Security: Data
describing a principal’s privilege attributes that has been
certified by an authority. In the DCE, the Privilege
Service is the certifying authority; it seals the privilege
attribute data in a ticket. The authorization protocol,
DCE Authorization, determines the permissions granted
to principals by comparing the privilege attributes in
PACs with entries in an access control list.

privilege service. Security: One of three services
provided by the Security Service; the Privilege Service
certifies a principal’s privileges. The other services are
the Registry Service and the Authentication Service.

privilege ticket. Security: A ticket that contains the
same information as a simple ticket, and also includes a
privilege attribute certificate. See service ticket, simple
ticket, and ticket-granting ticket.

procedure declaration. RPC: The syntax for an
operation, including its name, the data type of the value
it returns (if any), and the number, order, and data
types of its parameters (if any).

product-sensitive programming interface (PSPI).
(1) A special interface that is intended only to be used
for a specialized task such as diagnosis, modification,
monitoring, repairing, tailoring, or tuning. (2) A special
interface that is dependent on or requires the customer
to understand significant aspects of the detailed design
and implementation of the IBM software product.

profile. RPC: An entry in a name service database
that contains a collection of elements from which name
service interface (NSI) search operations construct
search paths for the database. Each search path is

composed of one or more elements that refer to name
service entries corresponding to a given RPC interface
and, optionally, to an object. See NSI profile attribute
and profile element.

profile element. RPC: A record in an RPC profile that
maps an RPC interface identifier to a profile member (a
server entry, group, or profile in a name service
database). See profile. See also group, interface
identifier and server entry.

profile member. RPC: A name service entry whose
name occupies the member field of an element of the
profile. See profile.

programming interface. The supported method
through which customer programs request software
services. The programming interface consists of a set
of callable services provided with the product.

proprietary. Pertaining to the holding of the exclusive
legal rights in making, using, or marketing a product.

protection level. The degree to which secure network
communications are protected. Synonymous with
authentication level.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in achieving
communication.

protocol family. Synonym for address family.

protocol sequence. Synonym for RPC protocol
sequence.

protocol sequence vector. RPC: A data structure that
contains an array-size count and an array of pointers to
RPC protocol-sequence strings. See RPC protocol
sequence.

PSPI. product-sensitive programming interface

Q
quiescent state. Application Support Server: The
server state wherein the serve r can process only
management calls. The Application Support Server
enters this state when the server initialization has been
completed or when the server is stopped by an
administrative client.

R
RACF. Resource Access Control Facility.

read access. CDS: An access right that grants the
ability to view data.

read-only replica. (1) CDS: A copy of a CDS

 Glossary 347

directory in which applications cannot make changes.
Although applications can look up information (read)
from it, they cannot create, change, or delete entries in
a read-only replica. Read-only replicas become
consistent with other, changeable replicas of the same
directory during skulks and routine propagation of
updates. (2) Security: A replicated Registry server.

realm. Security: A cell, considered exclusively from the
point of view of Security; this term is used in Kerberos
specifications. The term cell designates the basic unit
of DCE configuration and administration and
incorporates the notion of a realm.

recurring attribute. An attribute with several attribute
values.

reference monitor. Code that controls access to an
object. In the DCE, servers control access to the
objects they maintain; for a given object, the ACL
manager associated with that object makes
authorization decisions concerning the object.

reference pointer. RPC: A non-null pointer whose
value is invariant during a remote procedure call and
cannot point at aliased storage.

referral. GDS: An outcome that can be returned by a
DSA that cannot perform an operation itself. The
referral identifies one or more other DSAs more able to
perform the operation.

register. (1) RPC: To list an RPC interface with the
RPC runtime. (2) To place server-addressing
information into the local endpoint map. (3) To insert
authorization and authentication information into binding
information. See endpoint map and RPC interface.

Registry database. Security: A database of security
information about principals, groups, organizations,
accounts, and security policies.

Registry Service. Security: One of three services
provided by the Security Service; the Registry Service
manages information about principals, accounts, and
security policies. The other services are the Privilege
Service and the Authentication Service.

relative time. A discrete time interval that is usually
added to or subtracted from an absolute time. See
absolute time.

remote. Pertaining to a device, file or system that is
accessed by your system through a communications
line. Contrast with local.

remote procedure. RPC: An application procedure
located in a separate address space from calling code.
See remote procedure call.

remote procedure call. RPC: A client request to a
service provider located anywhere in the network.

Remote Procedure Call (RPC). A DCE component. It
allows requests from a client program to access a
procedure located anywhere in the network.

replica. CDS: A directory in the CDS namespace.
The first instance of a directory in the name space is
the master replica. See master replica and read-only
replica.

replication. The making of a shadow of a database to
be used by another node. Replication can improve
availability and load-sharing.

request. A command sent to a server over a
connection.

request buffer. RPC: A FIFO queue where an RPC
system temporarily stores call requests that arrive at an
endpoint of an RPC server until the server can process
them.

resource. Items such as printers, plotters, data
storage, or computer services. Each has a unique
identifier associated with it for naming purposes.

Resource Access Control Facility (RACF). An IBM
licensed program, that provides for access control by
identifying and verifying the users to the system,
authorizing access to protected resources, and logging
the detected unauthorized access to protected
resources.

return value. A function result that is returned in
addition to the values of any output or input/output
arguments.

ROM. Read-only memory.

RPC. Remote Procedure Call.

RPC control program (RPCCP). An interactive
administrative facility for managing name service entries
and endpoint maps for RPC applications.

RPCCP. RPC control program

RPC interface. A logical group of operations, data
types, and constant declarations that serves as a
network contract for a client to request a procedure in a
server. See also interface definition and operation.

RPC protocol. An RPC-specific communications
protocol that supports the semantics of the DCE RPC
API and runs over either connectionless or
connection-oriented communications protocols.

RPC protocol sequence. A valid combination of
communications protocols represented by a character

348 DCE Application Development Guide: Introduction and Style

string. Each RPC protocol sequence typically includes
three protocols: a network protocol, a transport protocol,
and an RPC protocol that works with the network and
transport protocols. See network protocol, RPC
protocol, and transfer protocol. Synonymous with
protocol sequence.

RPC runtime. A set of operations that manages
communications, provides access to the name service
database, and performs other tasks, such as managing
servers and accessing security information, for RPC
applications. See RPC runtime library.

RPC runtime library. A group of routines of the RPC
runtime that support the RPC applications on a system.
The runtime library provides a public interface to
application programmers, the application programming
interface (API), and a private interface to stubs, the stub
programming interface (SPI). See RPC runtime.

RPC thread. A logical thread within which a remote
procedure call is executed. See thread.

rundown procedure. RPC: A procedure used with a
context handle that is called following a communications
failure. It recovers resources reserved by a server for
servicing requests by a particular client. See context
handle.

runtime semantics. RPC: The rules of run time for a
remote procedure call, including the effect of multiple
calls on the outcome of a procedure’s operation. See
at-most-once semantics, broadcast semantics,
idempotent semantics, and maybe semantics.

S
scalability. The ability of a distributed system to
expand in size without changes to the system structure,
applications, or the way users deal with the system.

schema. See directory schema.

secret key. Security: A long-lived encryption key
shared between a principal and the Authentication
Service.

Security Service. A DCE component that provides
trustworthy identification of users, secure
communications, and controlled access to resources in
a distributed system.

segment. One or more contiguous elements of a
string.

server. (1) On a network, the computer that contains
programs, data, or provides the facilities that other
computers on the network can access. (2) The party

that receives remote procedure calls. Contrast with
client.

server addressing information. RPC: An RPC
protocol sequence, network address, and endpoint that
represent one way to access an RPC server over a
network; a part of server binding information. See
network address. See also binding information,
endpoint, and RPC protocol sequence.

server application thread. RPC: A thread running the
server application code that initializes the server and
listens for incoming calls. See application thread, client
application thread, local application thread, and RPC
thread.

server binding information. RPC: Binding information
for a particular RPC server. See binding information
and client binding information.

server entry. RPC: A name service entry that stores
the binding information associated with the RPC
interfaces of a particular RPC server and object
Universal Unique Identifiers (UUIDs) for any objects
offered by the server. See also binding information,
NSI binding attribute, NSI object attribute, object and
RPC interface.

server instance. RPC: A server running in a specific
address space. See server.

server state. Application Support Server: The
condition of the Application Support Server after it has
been started. The server state may be any of the
following, depending on the actions directed to it by the
administrator: initializing, quiescent, starting, operating,
or stopping.

server stub. RPC: The surrogate calling code for an
RPC interface that is linked with server application code
containing one or more sets of remote procedures
(managers) that implement the interface. See client
stub. See also manager.

service. In network architecture, the capabilities that
the layers closer to the physical media provide to the
layers closer to the end user.

service ticket. Security: A ticket for a specified service
other than the ticket-granting service. See privilege
ticket, simple ticket, and ticket-granting ticket.

session. GDS: A sequence of directory operations
requested by a particular user of a particular directory
user agent (DUA) using the same session object
management (OM) object.

session key. Security: A short-lived encryption key
provided by the Authentication Service to two principals
for the purpose of ensuring secure communications
between them. Synonymous with conversation key.

 Glossary 349

shell script. A file containing shell commands. If the
file can be processed, you can specify its name as a
simple command. Processing of a shell script causes a
shell to run the commands in the script. Alternatively, a
shell can be requested to run the commands in a shell
script by specifying the name of the shell script as the
operand sh utility.

SID. Subject identifier.

signal. Threads: To wake only one thread waiting on a
condition variable. See broadcast.

signed. Security: Pertaining to information that is
appended to an enciphered summary of the information.
This information is used to ensure the integrity of the
data, the authenticity of the originator, and the
unambiguous relationship between the originator and
the data.

sign-on. (1) A procedure to be followed at a terminal
or workstation to establish a link to a computer. (2) To
begin a session at a workstation. (3) Same as log on
or log in.

simple name. CDS: One element in a CDS full name.
Simple names are separated by slashes in the full
name.

simple ticket. Security: A ticket that contains the
principal’s identity, a session key, a timestamp and
other information, sealed using the target’s secret key.
See privilege ticket, service ticket, and ticket-granting
ticket.

single sign-on. In z/OS DCE, single sign-on to DCE
allows a z/OS user who has already been authenticated
to an MVS external security manager, such as RACF,
to be logged in to DCE. DCE does this automatically
when a DCE application is started, if the user is not
already logged in to DCE.

skew. The time difference between two clocks or clock
values.

socket. A unique host identifier created by the
concatenation of a port identifier with a TCP/IP address.

specific. XOM: The attribute types that can appear in
an instance of a given class, but not in an instance of
its superclasses.

SPI. (1) System programming interface. (2) Stub
programming interface.

S-stub. GDS: The part of the directory system agent
(DSA) that establishes the connection to the
communications network.

standard. A model that is established and widely
used.

string. An ordered sequence of bits, octets, or
characters, accompanied by the string’s length.

stub. RPC: A code module specific to an RPC
interface that is generated by the Interface Definition
Language (IDL) compiler to support remote procedure
calls for the interface. RPC stubs are linked with client
and server applications and hide the intricacies of
remote procedure calls from the application code. See
client stub and server stub.

Stub programming interface (SPI). RPC : A private
runtime interface whose routines are unavailable to
application code.

subject identifier (SID). A string that identifies a user
or set of users. Each SID consists of three fields in the
form person.group.organization. In an account, each
field must have a specific value; in an access control list
(ACL) entry, one or more fields may use a wildcard.

synchronization. DTS: The process by which a
Distributed Time Service entity requests clock values
from other systems, computes a new time from the
values, and adjusts its system clock to the new time.

syntax. (1) XOM: An object management (OM) syntax
is any of the various categories into which the OM
specification statically groups values on the basis of
their form. These categories are additional to the OM
type of the value. (2) A category into which an attribute
value is placed on the basis of its form. See attribute
syntax.

System programming interface (SPI).. A private
interface reserved for use by other services within a
system and not available to application code. Contrast
with API.

system time. The time value maintained and used by
the operating system.

T
TCP. Transmission Control Protocol

TCP/IP. Transmission Control Protocol/Internet
Protocol

TDF. Time differential factor.

thread. A single sequential flow of control within a
process.

thread handle. RPC: A data item that enables threads
to share a storage management environment.

Threads Service. A DCE component that provides
portable facilities that support concurrent programming.

350 DCE Application Development Guide: Introduction and Style

The threads service includes operations to create and
control multiple threads of execution in a single process
and to synchronize access to global data within an
application.

ticket. Security: An application-transparent mechanism
that transmits the identity of an initiating principal to its
target. See privilege ticket, service ticket, simple ticket
and ticket-granting ticket.

ticket-granting ticket. Security: A ticket to the
ticket-granting service. See privilege ticket, service
ticket, and simple ticket.

time differential factor (TDF). DTS: The difference
between universal time coordinated (UTC) and the time
in a particular time zone.

timeout period. The amount of time in seconds that
the Control Task waits for a daemon to initialize
successfully. If this time elapses and the daemon does
not indicate to the Control Task that it has successfully
initialized, the daemon’s state is deemed to be
UNKNOWN.

time provider (TP). DTS: A process that queries
universal time coordinated (UTC) from a hardware
device and provides it to the server.

time provider interface (TPI). An interface between
the DTS server and external time provider process.
The DTS server uses the interface to communicate with
the time provider and to obtain timestamps from an
external time source.

time provider program. DTS: An application that
functions as a time provider.

time slicing. A mechanism by which running threads
are preempted at fixed intervals. This ensures that
every thread is allowed time to be executed.

top level pointer. RPC: A pointer parameter that in a
chain of pointers is the only member that is not the
referent of any other pointer.

tower. CDS: A set of physical address and protocol
information for a particular server. CDS uses this
information to locate the system on which a server
resides and to determine which protocols are available
at the server. Tower values are contained in the
CDS_Towers attribute associated with the object entry
that represents the server in the cell namespace.

TP. Time provider.

TP server. DTS: A server connected to a time provider
(TP).

TPI. Time provider interface.

transaction. (1) A unit of processing consisting of one
more application programs initiated by a single request,
often from a terminal. (2) IMS/ESA: A message
destined for an application program.

transfer syntax. RPC: A set of encoding rules used
for transmitting data over a network and for converting
application data to and from different local data
representations. See also Network Data
Representation.

Transmission Control Protocol (TCP). A
communications protocol used in Internet and any other
network following the U.S. Department of Defense
standards for inter-network protocol. TCP provides a
reliable host-to-host protocol in packet-switched
communication networks and in an interconnected
system of such networks. It assumes that the Internet
Protocol is the underlying protocol. The protocol that
provides a reliable, full-duplex, connection-oriented
service for applications.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of non-proprietary communications
protocols that support peer-to-peer connectivity
functions for both local and wide area networks.

transmitted type. RPC: For data types with the IDL
transmit_as attribute, the data type that stubs pass
over the network. Stubs invoke conversion routines to
convert the transmitted type to a presented type, which
is manipulated by clients and servers. See presented
type.

transport independence. RPC: The capability, without
changing application code, to use any transport protocol
that both the client and server systems support, while
guaranteeing the same call semantics. See transport
layer and transport protocol.

transport layer. A network service that provides
end-to-end communications between two parties, while
hiding the details of the communications network. The
Transmission Control Protocol (TCP) and International
Organization for Standardization (ISO) TP4 transport
protocols provide full-duplex virtual circuits on which
delivery is reliable, error free, sequenced, and duplicate
free. User Datagram Protocol (UDP) provides no
guarantees. The connectionless RPC protocol provides
some guarantees on top of UDP.

transport protocol. A communications protocol, such
as the Transmission Control Protocol (TCP) or the User
Datagram Protocol (UDP).

trust peer. One side of a cross-registration that
enables two cells to have peer trust. See peer trust.

type. XOM: A category into which attribute values are
placed on the basis of their purpose. See attribute
type.

 Glossary 351

type UUID. RPC: The Universal Unique Identifier
(UUID) that identifies a particular type of object and an
associated manager. See also manager and object.

U
UDP. User Datagram Protocol.

unexport. RPC: To remove binding information from a
server entry in a name service database. Contrast with
export.

Universal Time Coordinated (UTC). The basis of
standard time throughout the world. Synonymous with
Greenwich mean time (GMT).

Universal Unique Identifier (UUID). RPC: An
identifier that is immutable and unique across time and
space. A UUID can uniquely identify an entity such as
an object or an RPC interface. See interface UUID,
object UUID, and type UUID.

unmarshalling. RPC: The process by which a stub
disassembles incoming network data and converts it
into local data in the appropriate local data
representation. Contrast with marshalling.

user. A person who requires the services of a
computing system.

User Datagram Protocol (UDP). In TCP/IP, a
packet-level protocol built directly on the Internet
protocol layer. UDP is used for
application-to-application programs between TCP/IP
host systems.

UTC. Universal Time Coordinated

UUID. Universal unique identifier

V
value. XOM: An arbitrary and complex information
item that can be viewed as a characteristic or property
of an object. See attribute value.

varying array. RPC: An array in which part of its
contents is transmitted during a remote procedure call.

vector. RPC: An array of references to other
structures.

vendor. Supplier of software products.

VFS. Virtual file system.

Virtual file system (VFS). DFS: A level of abstraction
above the specific interfaces to various types of file
systems. It is used to avoid having to change kernel
code to handle low-level, system-specific differences.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.
It provides single-domain, multiple-domain, and
interconnected network capability.

VTAM. Virtual Telecommunications Access Method.

W
well-known endpoint. RPC: A preassigned, stable
endpoint that a server can use every time it runs.
Well-known endpoints typically are assigned by a
central authority responsible for a transport protocol.
An application declares a well-known endpoint either as
an attribute in an RPC interface header or as a variable
in the server application code. See dynamic endpoint
and endpoint.

workstation. A device that enables users to transmit
information to or receive information from a computer,
for example, a display station or printer.

X
X.500. The CCITT/ISO standard for the open systems
interconnection (OSI) application-layer directory. It
allows users to register, store, search, and retrieve
information about any objects or resources in a network
or distributed system.

XDS. The X/Open Directory Services API.

X/Open Directory Services (XDS). An application
program interface that DCE uses to access its directory
service components. XDS provides facilities for adding,
deleting, and looking up names and their attributes.
The XDS library detects the format of the name to be
looked up and directs the calls it receives to either GDS
or CDS. XDS uses the XOM API to define and manage
its information.

XOM. The X/Open OSI-Abstract-Data Manipulation
API.

352 DCE Application Development Guide: Introduction and Style

 Bibliography

This bibliography is a list of publications for z/OS DCE and other products. The complete title, order number, and a
brief description is given for each publication.

z/OS DCE Publications

This section lists and provides a brief description of each publication in the z/OS DCE library.

 Overview
� z/OS DCE Introduction, GC24-5911

This book introduces z/OS DCE. Whether you are
a system manager, technical planner, z/OS system
programmer, or application programmer, it will help
you understand DCE and evaluate the uses and
benefits of including z/OS DCE as part of your
information processing environment.

 Planning
� z/OS DCE Planning, GC24-5913

This book helps you plan for the organization and
installation of z/OS DCE. It discusses the benefits
of distributed computing in general and describes
how to develop plans for a distributed system in a
z/OS environment.

 Administration
� z/OS DCE Configuring and Getting Started,

SC24-5910

This book helps system and network administrators
configure z/OS DCE.

� z/OS DCE Administration Guide, SC24-5904

This book helps system and network administrators
understand z/OS DCE and tells how to administer it
from the batch, TSO, and shell environments.

� z/OS DCE Command Reference, SC24-5909

This book provides reference information for the
commands that system and network administrators
use to work with z/OS DCE.

� z/OS DCE User's Guide, SC24-5914

This book describes how to use z/OS DCE to work
with your user account, use the directory service,

work with namespaces, and change access to
objects that you own.

 Application Development
� z/OS DCE Application Development Guide:

Introduction and Style, SC24-5907

This book assists you in designing, writing,
compiling, linking, and running distributed
applications in z/OS DCE.

� z/OS DCE Application Development Guide: Core
Components, SC24-5905

This book assists programmers in developing
applications using application facilities, threads,
remote procedure calls, distributed time service, and
security service.

� z/OS DCE Application Development Guide:
Directory Services, SC24-5906

This book describes the z/OS DCE directory service
and assists programmers in developing applications
for the cell directory service and the global directory
service.

� z/OS DCE Application Development Reference,
SC24-5908

This book explains the DCE Application Program
Interfaces (APIs) that you can use to write
distributed applications on z/OS DCE.

 Reference
� z/OS DCE Messages and Codes, SC24-5912

This book provides detailed explanations and
recovery actions for the messages, status codes,
and exception codes issued by z/OS DCE.

z/OS SecureWay Security Server Publications

This section lists and provides a brief description of books in the z/OS SecureWay Security Server library that may be
needed for z/OS SecureWay Security Server DCE and for RACF interoperability.

 Copyright IBM Corp. 1994, 2001 353

� z/OS SecureWay Security Server DCE Overview,
GC24-5921

This book describes the z/OS SecureWay Security
Server DCE and provides z/OS SecureWay Security
Server DCE information about the z/OS DCE
library.

� z/OS SecureWay Security Server LDAP Client
Programming, SC24-5924

This book describes the Lightweight Directory
Access Protocol (LDAP) client APIs that you can
use to write distributed applications on z/OS DCE
and gives you information on how to develop LDAP
applications.

� z/OS SecureWay Security Server RACF Security
Administrator's Guide, SA22-7683.

This book explains RACF concepts and describes
how to plan for and implement RACF.

� z/OS SecureWay Security Server LDAP Server
Administration and Use, SC24-5923

This book describes how to install, configure, and
run the LDAP server. It is intended for
administrators who will maintain the server and
database.

� z/OS SecureWay Security Server Firewall
Technologies, SC24-5922

This book provides the configuration, commands,
messages, examples and problem determination for
the z/OS Firewall Technologies. It is intended for
network or system security administrators who
install, administer and use the z/OS Firewall
Technologies.

Tool Control Language Publication

� Tcl and the Tk Toolkit, John K. Osterhout, (c)1994,
Addison—Wesley Publishing Company.

This non-IBM book on the Tool Control Language is
useful for application developers, DCECP script
writers, and end users.

IBM C/C++ Language Publication

� z/OS C/C++ Programming Guide, SC09-4765 This book describes how to develop applications in
the C/C++ language in z/OS.

z/OS DCE Application Support Publications

This section lists and provides a brief description of each publication in the z/OS DCE Application Support library.

� z/OS DCE Application Support Configuration and
Administration Guide, SC24-5903

This book helps system and network administrators
understand and administer Application Support.

� z/OS DCE Application Support Programming Guide,
SC24-5902

This book provides information on using Application
Support to develop applications that can access
CICS and IMS transactions.

354 DCE Application Development Guide: Introduction and Style

 Encina Publications

� z/OS Encina Toolkit Executive Guide and
Reference, SC24-5919

This book discusses writing Encina applications for
z/OS.

� z/OS Encina Transactional RPC Support for IMS,
SC24-5920

This book is to help software designers and
programmers extend their IMS transaction
applications to participate in a distributed,
transactional client/server application.

 Bibliography 355

356 DCE Application Development Guide: Introduction and Style

 Index

Special Characters
.profile file

using to set variables 55

A
access checking, model 180
access control 163
Access Control List (ACL)

application role in interface 183
authorization 180
backing store routines 182
editor 219
entries

and access checking model 180
any_other 181
foreign_group 181
foreign_other 181
foreign_user 181
group 181
other_object 181
types 180
user 181

example 131
extracting and evaluating 186
manager 182

definition 185
example 188
printstrings 185

permissions 180
privilege attributes 180
remote interface (rdacl) 182
requirements on application to use 183
routines 182

ACF (Attribute Configuration File)
See Attribute Configuration File (ACF)

ACL (Access Control List)
See Access Control List (ACL)

adding multiple object type, Greet example 100
administration, DCE

DCE control program (dcecp) 10
ALL31 57
allocating data sets 32
allocation, memory (RPC) 249
application

building
in batch 50
in the shell 48

code
link-editing 45

example 273
interface, naming 37

application (continued)
Language Environment

interlanguage calls 58
runtime options 57

link-editing 45
multithreaded 150
producing an executable 274
server 39
status

checking in batch 52
checking in the shell 52
checking in TSO/E 52

stopping
abnormally 52
from the shell 52
from TSO/E 52
normally 52

application development, DCE
application role in security 183
DCE control program (dcecp) 10
DCE Host Daemon 9
declaring data types and constants for 12
example 273
interface definition

handle 8, 9
interface routines, overview 10
multithreaded applications 150
object, definition of 184
overview 4
parallelism 150
steps 5
steps, high level 29
threads, using 149
tools

attribute configuration language 7
interface definition language 7
interface definition language (IDL) 8
remote DCE management 7
UUID generator (uuidgen) 7

application example, DCE 273
application, sample

client code 272
makefile 271
manager code 272
object bind interface 272
server code 271

arrays, RPC 255
at-most-once (RPC execution semantic) 241
Attribute Configuration File (ACF)

description 37
file

timop 275, 285

 Copyright IBM Corp. 1994, 2001 357

Attribute Configuration File (ACF) (continued)
Greet example, auto_handle 98
overview 9

attributes, privilege 180
audience skills xvii
authentication

and binding methods 213
authentication, security

authenticated RPC 169
client, steps 174
identity 168
identity, obtaining 168
keys 169
keytab files 169
model 165
server, steps 170
ticket-granting ticket (TGT) 168

authorization, security
ACLs 180
manager, example 188
managers 182
overview 176
permissions 180

auto_handle, ACF, Greet example 98
automatic binding 209

client code, Greet application 99
handle, using 97
management 97
manager code, Greet example 99
modifying the Greet application 98

auxiliary header file, timop 285

B
backing store

ACL UUID-indexed
contents 187

name-indexed
contents 187

object-indexed
data type 187
header contents 187

batch
building applications in 50
checking application status in 52
compiling client and server programs in 43
compiling IDL files in 39
dcelogin 75
link-editing in 47
running client application in 51
running server application in 50
runtime environment variables

setting in 56
UUID

generating in 36

BELOWHEAP 57
bibliography 353
binding

authentication and 213
call routing 206
definition of 203
handles

customized 212
data type (in RPC) 212
primitive 212

importing and exporting 221
information

Greet application, exporting 86
information repository (NSI) 215
information, components of 203
information, models for accessing

by objects 232
by servers 232
by services 231

interface, sample code for 272
management

automatic method 97
methods

explicit 210
implicit 210

model, client 205
model, server 204
name service role in 217
object UUIDs as endpoint identifiers 208
overview 203
role of DNS 221
routing policy 208
RPC protocol version identifier (binding

information) 203
semantics 212
transfer syntax identifier (binding information) 203

body, interface 12
books, list of DCE and related 353
broadcast (RPC execution semantic) 242
building TIMOP 278

C
C language

data types
mapping to IDL types 245

C programs
compiling with DLL option 40

c89 compiler
compiling 41
link-editing 45

call routing 206
call, remote procedure 9
cataloged procedure

EDCC 43
EDCPL 47

358 DCE Application Development Guide: Introduction and Style

CC EXEC 42
CDS (Cell Directory Service)

See Cell Directory Service (CDS)
Cell Directory Service (CDS)

accessing 219
entry attributes 219, 220
entry types

binding 219
group 219
object 219
profile 220

exporting the Greet server binding 87
Greet client source code 92
Greet server source code 88
importing the Greet server binding 91
starting the Greet client 95
starting the Greet server 94
use in NSI to access 219
XDS interface to 219

character parameter, RPC 248
checking application status 52
client

application
running in batch 51
running in the shell 51
running in TSO/E 51

authenticating 174
binding model 205
code

Greet application 66
Greet application, automatic binding 99
writing 40

control
managing server with 267

credentials, security 179
generic, sample code for 272
Greet

output 95
programs, compiling

in batch 43
in the shell 41
in TSO/E 42

role in security 163
source

file, timop 275
listing, timop 287

starting 51
use of name service, example 221

CLIST
CPLINK 46

commands
dcelogin 75
server show 10
server start 10
tso dcelogin 75
tso netstat int 96

commands (continued)
uuidgen 11

compile options 45
compiling

client and server programs
in batch 43
in the shell 41
in TSO/E 42

DCE applications 40
DCE applications, sample JCL 44
Greet interface 61
IDL file

in batch 39
in the shell 38
in TSO/E 39

interface 37
context handles (RPC) 255
Control Program, DCE (dcecp)

functions 10
CPARM option 45
CPLINK CLIST 46
creating

Greet application 58
IDL file 35, 36

credentials, security 179
customized binding handle 212
customizing

environment, runtime 53
runtime environment 53

D
daemon, DCE Host (dced) 9
data protection 163
data sets

allocating 32
Greet application 59

data types
arrays 255
character 248
context handles 255
handle_t 212
IDL to C type mappings 245
marshalling 262
pipes 261
pointers 248
rpc_binding_handle_t 212
structures and unions 259

database, backing store 186
DBCS data 248
DCE (Distributed Computing Environment) 48
DCE application development

See application development, DCE
DCE application files 30, 31

system-generated 31
user-written 30

 Index 359

DCE Control Program
functions 10

DCE file names
example of remote 215
junctions in 215

DCE Host Daemon
functions 9

DCE Name Service Interface (NSI)
See Name Service Interface (NSI), DCE

DCE security
See security, DCE

dce_acl_is_client_authorized 185
dce_db_std_header_init 187
dce_server_inq_server 267
dce_server_register 268
dce_server_sec_begin 268
DCE, logging in 75
dcecp

See Control Program, DCE (dcecp)
dcecp and server information 9
dced (DCE Host Daemon)

functions 9
dced_server_disable_if 267
dced_server_enable_if 267
dcelogin

command 75
in batch 75

debugging, and dcecp 10
defining

interface operations 37
definition side-deck 40
developing applications 29
developing DCE applications 273
development, application

See application development, DCE
DFS (Distributed File Service)

See Distributed File Service (DFS)
Directory Services, X/Open (XDS) interface

See X/Open Directory Services (XDS) interface
Distributed Computing Environment (DCE)

application
building in batch 50
building in the shell 48
running 50
simplified development cycle 273
starting 50

client, running sample JCL 51
DTS operations, example application 276
server application

running in batch 50
running in the shell 50

server, sample JCL to run 51
Distributed File Service (DFS)

junctions 215
DLL (Dynamic Link Library)

See also Dynamic Link Library (DLL)

DLL (Dynamic Link Library) (continued)
support of C/C++ compiler 40

dynamic endpoint 223
Dynamic Link Library (DLL)

compiler option 40
link-editing 40

E
EDCC cataloged procedure 43
EDCPL cataloged procedure 47
endpoint

binding information 203
identifiers 208
map 9
obtaining 223
registering the Greet server 82

Entry Point Vector (EPV) 14
envar file

using to set variables 56
environment, runtime

variables 53
setting in batch 56
setting in the shell 55
setting in TSO/E 56

EPM, using, Greet application 79
EPV (Entry Point Vector)

See Entry Point Vector (EPV)
examples

application code 271
application, DCE DTS operations 276
application, Greet 58
application, timop 273
IDL file 34
monitoring 96

EXEC
CC 42

executable DCE application, producing 274
explicit binding 210
export command

using to set variables 55
exporting binding information

Greet example 86
exporting bindings 221
exporting Greet server binding 87

F
file

for DCE application 30, 31
file names, DCE

example of remote 215
junctions in 215

File Service, Distributed (DFS)
See Distributed File Service (DFS)

360 DCE Application Development Guide: Introduction and Style

forking in a threaded program 161
forwarding 223
free_inst (sample) 264
from_xmit (sample) 265
full pointer parameters (RPC) 243

G
generating IDL file 35
generic RPC functions 39
glossary 333
Greet client

code for CDS 92
code, multiple objects 111
multiple objects 110
output 74, 95
starting 73
starting, using CDS 95

Greet example
ACF, auto_handle 98
application 58
automatic binding

client code 99
IDL file 98
manager code 99

building 69
client code 66
compiling the interface 61
creating files 59
data sets 59
defining interface operations 61
exporting binding information 86
extending 75
fast path 58
generating IDL file 59
generating UUID 59
header file 63
link-editing 71
manager code 63
modifying the Greet Server Code 79
multiple object type, adding 100
name-based authorization 117
naming the interface 60
object type management 101
PAC-based 131
searching for server 78
securing 117
server code 63
server entry 86
using automatic binding 98
using the EPM 79
using the Name Service Interface (NSI) 86

Greet IDL file, object type management 102
Greet manager, multiple object type 103
Greet server

binding 87, 91
exporting 87

Greet server (continued)
binding (continued)

importing 91
code, for CDS 88
multiple objects 104
output 95
starting 72
starting, using CDS 94

Greet server endpoint, registering 82
group entry, directory 229

H
handle

interface 8
handle, binding

See also binding, handles
methods

automatic 209
parameters

binding handles as 209
header

client, timop 286
header file

Greet application 63
header, interface 12

file
parts 12

HEAP 57
host

daemon (dced) 9
data

controlling 9
Host Daemon, DCE

functions 9

I
identifier, object (OID)

use in directory service 220
identity

checking 164
principal (security) 165

IDL (Interface Definition Language)
See Interface Definition Language (IDL)

IDLALLOC REXX EXEC 33
implicit binding 210
importing

bindings 221
Greet server binding 91

initialization, server 13
initializing server manager 268
instance, server 9, 203
interface

body 12
definition

generating with uuidgen 11

 Index 361

interface (continued)
definition (continued)

RPC 8
entry point vector (EPV) 14
handle 8
header 12
naming the application 37
operation declaration 12
registration 14
routines, application development 10
specification 8

Interface Definition Language (IDL)
cataloged procedure 39
compiler

output 37
running 39
sample JCL 39

compiler output 37
compiler, shell 38
file

compiling in batch 39
compiling in shell 38
compiling in TSO/E 39
example 34
generating 273
generating in batch 36
generating in the shell 35
generating in TSO/E 35
generating with uuidgen 11
Greet example, automatic binding 98
timop 284

operations 12
REXX EXEC 39

interface operations, defining 37
interface uuid 216
interface, ambiguous 224
interlanguage calls 58
international character data type (RPC) 248

J
junction, namespace 218

junction, namespace
and ACL editor 219

K
kerberos 165
key 170
keytab files 169

L
Language Environment

application debugging options
TERMTHDACT 57
TRACE 57

Language Environment (continued)
application storage options

ALL31 57
BELOWHEAP 57
HEAP 57
LIBSTACK 57
STACK 57
STORAGE 57

runtime options 57
LIBSTACK 57
link-editing

application code
in batch 47
in the shell 45
in TSO/E 46

clients, sample JCL 47
DCE applications 40, 45
DCE servers, sample JCL 48
Greet example 71
pre-link step 45

logging into DCE 75
login

context and security 168
LONGNAME option 45
lookups, name 229
lower-level pointer, definition 250

M
makefile sample code 271
managekey routine (sample) 171
management

services, DCE
remote, providing 9

manager
ACL 182
ACL, example 188
generic, sample code for 272

manager code
Greet application 63
Greet example

automatic binding 99
writing 39

manager routine 39
manager source listing, timop 299
map, endpoint 9
mapping 223
marshalling

data 243
data types (RPC) 262

maybe (RPC execution semantic) 242
memory allocation (RPC) 243, 249
monitoring distributed applications 96
multiple objects

Greet client 110
Greet client code 111

362 DCE Application Development Guide: Introduction and Style

multiple objects (continued)
Greet server 104
starting the Greet4 application 114
type, Greet example 100

multithreading 14, 150

N
name lookups, in directory 229
name resolution, server object 183
Name Service Interface (NSI), DCE

binding 217
ambiguous 224
binding handle, contents 222
endpoint mapper 223
importing and exporting bindings 221
partial 224
partial binding 223

binding, partial and 224
Cell Directory Service (CDS) 219
client and server use of, example 221
Greet application 86
group entry 229
junction 215
junction, namespace

example 218
names versus objects 215
namespace 215
namespace, object-oriented 226
objects, examples of 226
OIDs 220
overview 215
profile entry 230
terminology 219
use as binding repository 215
use of CDS as database 219
uuid 216

name-based authorization
example 117

names, file, DCE
example of remote 215
junctions in 215

namespace
entry types

profile 231
server 231

exporting Greet server binding 87
importing Greet server binding 91
object-oriented 226

naming the application interface 37
network monitor

dynamic version 96
non-pointer parameters (RPC) 243
NSI (Name Service Interface)

See Name Service Interface (NSI), DCE

O
object

databases with information about 184
definition 184
state information 184

object identifier (OID)
use in directory service 220

object type management
Greet application 101
Greet IDL file 102
Greet manager 103

object UUID 208, 216
object-oriented namespace

setting up 227
object, definition of a DCE 216
objects, directory, examples of 226
on-demand server 267
operation declaration 12
output

Greet client 95
Greet server 95

P
PAC-based security

example 131
parallelism 150
password, security 170
permissions, security 180
persistent server 267
pinging a server 10
pipes (RPC) 261

data types
marshalling 262

pointers (RPC) 248
portability, application 3
principal identity, security 165
privilege attributes 180
privilege ticket-granting ticket (PTGT)

(security) 168
PROC

EDCC 43
EDCPL 47
IDL 39
UUIDGEN 36

profile entry, directory 230
binding

information, models for accessing 231
information, models for accessing

(non-CDS) 233
namespace

global organization of 238
parameters

overview 241

 Index 363

program development
See application development, DCE

programming
client 40
manager 39
server 39

protection, data 163
protocol, secret key 165
pthread_cancel 155
pthread_cleanup_pop 158
pthread_cleanup_push 158
pthread_cond_signal 161
pthread_cond_timedwait 156
pthread_cond_wait 153
pthread_create 149
pthread_delay_np 156
pthread_detach 154
pthread_equal 154
pthread_exc.h 158
pthread_exit 158
pthread_getspecific 154
pthread_join 154
pthread_keycreate 154
pthread_lock_global_np 153
pthread_mutex_lock 152
pthread_set_prio 153

programming topics
thread handles 154

pthread_set_scheduler 153
pthread_setasynccancel 155
pthread_setcancel 155
pthread_setprio 149
pthread_setspecific 154
pthread_signal_to_cancel_np 155
pthread_testcancel 156
pthread.h 153

R
rdacl interface 182, 208
reference monitor source listing, timop 301
reference pointer parameters (RPC) 243
registering

Greet server endpoint 82
registration, server 14
remote management callback 186
Remote Procedure Call (RPC)

APIs, generic 39
arrays 255
attribute configuration file (ACF) 9
authenticated 169
call semantics policy 241
data passing 241
data types 212

arrays 255
binding handle 212
character 248

Remote Procedure Call (RPC) (continued)
data types (continued)

constructed 244
context handles 255
IDL to C type mappings 245
pipes 261
pointers 248
structures and unions 259

execution semantics
attributes 241

failure
states 242

finding servers 203
functions, generic 39
interface body 12
interface handle 8
interface header 12
interface operation declaration 12
memory

allocation, client side 243
management 243

memory allocation 249
parameter semantics 242
parameters

character 248
context handles 255
in,out type 244
memory management 243
out type 244
pointers 248
semantics 242
status 243
structures and unions 259

pointers
lower-level 250
rules for using 250
top-level 250
types 249

protocol version identifier (binding information) 203
server instance 9
servers (endpoints)

mapper 9
RENT option 45
repository, binding, use of namespace as 215
resolver routine 186
REXX EXEC

IDL 39
IDLALLOC 33
UUIDGEN 35

routines, application development interface 10
routing policy 208
RPC (Remote Procedure Call)

See Remote Procedure Call (RPC)
rpc_binding_inq_auth_caller 164

authentication
model 165

364 DCE Application Development Guide: Introduction and Style

rpc_binding_set_auth_info 163, 169
rpc_ep_resolve_binding 208
rpc_ep_unregister 52
rpc_mgmt_ routines 268
rpc_mgmt_set_authorization_fn 268
rpc_mgmt_stop_server_listening 52
rpc_ns_binding_unexport 52
rpc_server_register_auth_info 163
rpc_server_use_protseq 151
rpc_sm_allocate 244

data types
primitive 244

rpc_sm_client_free 244, 249
memory allocation

server side 244
running timop 279, 280
runtime

environment
customizing 53
variables 53

runtime options
Language Environment 57

S
sample JCL

compiling applications 44
IDL compiler 39
link-editing DCE servers 48
running a DCE client 51
running a DCE server 51
to link-edit DCE clients 47

sample_client.c sample code 272
sample_manager.c sample code 272
sample_server.c sample code 271
scripts 10
SDSF panel 52
searching for server, Greet application 78
sec_acl routines 182
sec_key_mgmt_get_key 168
sec_key_mgmt_manage_key 170
sec_login_setup_identity 168
sec_login_validate_identity 168
secret key protocol 165
security, DCE

application program roles in 165
application role in 183
authentication

authenticated RPC 169
client, steps 174
identity, obtaining 168
keys, managing 169
keytab files 169
server, steps 170
ticket-granting ticket (TGT) 168

authorization
Access Control Lists (ACLs) 180

security, DCE (continued)
authorization (continued)

ACL manager, example 188
ACL managers 182
credentials 179
overview 176
permissions 180

example 117
kerberos 165
model 163
overview 163
principal 165
protocol, shared secret key 165

semantics, binding 212
semantics, execution, RPC 241
server

authenticating 170
binding model 204
code

Greet application 63
requirements to use ACL management 183
writing 39

commands
server show 10
server start 10

connecting (binding) to a 203
controlling

remotely 9
generic, sample code for 271
Greet, output 95
header file listing, timop 295
host network address (binding information) 203
identity, checking 164
initialization 13
instance 9

endpoint of (binding information) 203
management

application support for 268
overview 267

manager
initialization 268

managing with a control client
example 267

multithreading 14
object name resolution 183
pinging 10
programs, compiling

in batch 43
in the shell 41
in TSO/E 42

registration 14
role in security 163
source file, timop 275
source listing, timop 296
starting 50

by dced 267
in batch 50

 Index 365

server (continued)
starting (continued)

in the shell 50
types

on-demand 267
persistent 267

use of name service, example 221
server_get_identity 171
server_renew_identity 172, 173
shell

building applications in 48
checking application status in 52
commands

export 55
compiling client and server programs in 41
compiling IDL files in 38
link-editing in 45
running client application in 51
runtime environment variables

setting in 55
starting server application in 50
stopping application from 52
using envar file 56
UUID

generating in 35
side-deck, definition 40
simplified development cycle, DCE application 273
skeleton IDL file 273
skills, for audience xvii
source file timop 273
source listing, timop reference monitor 301
STACK 57
starting

client 51
DCE application 50
Greet client 73
Greet client, for CDS 95
Greet example, multiple objects 114
Greet server 72
Greet server, for CDS 94
server 50

state information, object 184
stopping

applications 52
Greet example 74

STORAGE 57
storage allocation (RPC) 243
store, backing

ACL UUID-indexed
contents 187

name-indexed
contents 187

object-indexed
data type 187
header contents 187

structures (RPC) 259
stub file

purpose 276

T
TCP/IP Real Time Network Monitor 96
terminating threads 157
terminology

in this book xx
TERMTHDACT 57
threads

multithreading 150
overview 149
policy, scheduling 151
policy, use 150
programming topics

cancelation points 156
canceling threads 155
forking in a threaded program 161
signals 159
storage for thread specific data 154
terminating threads 157
thread cleanup 158

related routines
rpc_server_listen 151

routines
pthread_cancel 155
pthread_cleanup_pop 158
pthread_cleanup_push 158
pthread_cond_signal 161
pthread_cond_timedwait 156
pthread_cond_wait 153
pthread_create 149
pthread_delay_np 156
pthread_detach 154
pthread_equal 154
pthread_exit 158
pthread_getspecific 154
pthread_join 154
pthread_keycreate 154
pthread_lock_global_np 153
pthread_mutex_lock 152
pthread_set_prio 153
pthread_set_scheduler 153
pthread_setasynccancel 155
pthread_setcancel 155
pthread_setprio 149
pthread_setspecific 154
pthread_signal_to_cancel_np 155
pthread_testcancel 156

RPC
semantics 162

rules for using 152
safety

blocking behavior 152
problem contexts 152

366 DCE Application Development Guide: Introduction and Style

threads (continued)
safety (continued)

reentrancy 152
ticket-granting ticket (TGT) (security) 168
timop

ACF file 275
ACF file listing 285
auxiliary header file listing 285
client

description 276
header, source listing 286
source listing 287

client source file 275
description 276
example application 273
IDL file listing 284
manager

source listing 299
reference monitor

source listing 301
running 279, 280
server

description 276
header file listing 295
source listing 296

server source file 275
source code listing 284
source file 273
source files 277
suggested enhancements 282

tools
endpoint mapper 9

top-level pointer, definition 250
TRACE 57
transfer syntax identifier (binding information) 203
transmit_as attribute (RPC) 262
tso dcelogin command 75
tso netstat int command 96
TSO/E

checking application status in 52
compiling client and server programs in 42
compiling IDL files in 39
link-editing in 46
running client application in 51
runtime environment variables

setting in 56
stopping application from 52
UUID

generating in 35
type manager

Greet application 101
Greet client 110
Greet IDL file 102
Greet manager 103
Greet server 104

typedefs 247

U
unions (RPC) 259
unique identification 7
Universal Unique Identifier (UUID)

generating in batch 36
generating in the shell 35
generating in TSO/E 35
generator 7
identifying interfaces 37
interface 216
object 216
object, and binding ambiguity 225
object, use of, example 225
use of OID instead of 220
uses in DCE 216

UNIX System Services
parameter considerations

MAXTHREADS 58
MAXTHREADSTASKS 58

utilities, DCE
uuidgen 11

UUID (Universal Unique Identifier)
See Universal Unique Identifier (UUID)

UUIDGEN cataloged procedure 36
uuidgen command 273
UUIDGEN REXX EXEC 35
uuidgen utility 35

V
variables

environment, runtime
_EUV_EXC_ABEND_DUMPS 54
_EUV_EXC_SW_DUMPS 54
_EUV_RPC_COMM_TIMEOUT 54
_EUV_RPC_DYNAMIC_POOL 53
_EUV_SVC_API_DUMPS 53
LANG 53
NLSPATH 53
overview 53
RPC_DEFAULT_ENTRY 53
RPC_DEFAULT_ENTRY_SYNTAX 53
setting in batch 56
setting in the shell 55
setting in TSO/E 56
setting with .profile file 55

X
X/Open Directory Services (XDS) interface 219
XDS (X/Open Directory Services) interface

See X/Open Directory Services (XDS) interface

 Index 367

 Readers' Comments

z/OS
DCE
Application Development Guide:
Introduction and Style

Publication No. SC24-5907-00

You may use this form to report errors, to suggest improvements, or to express your opinion on
the appearance, organization, or completeness of this book.

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

 Note

Report system problems to your IBM representative or the IBM branch office serving you.
U.S. customers can order publications by calling the IBM Software Manufacturing Solutions at
1-800-879-2755.

In addition to using this postage-paid form, you may send your comments by:

Would you like a reply? YES NO If yes, please tell us the type of response you prefer.

 Electronic address:

 FAX number:

 Mail: (Please fill in your name and address below.)

Name Address

Company or Organization

Phone No.

Date:

FAX 1-607-752-2327 Internet pubrcf@vnet.ibm.com
IBMLink GDLVME(PUBRCF)

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC24-5907-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department G60
International Business Machines Corporation
Information Development
1701 North Street
ENDICOTT NY 13760-5553

Fold and Tape Please do not staple Fold and Tape

SC24-5907-00

IBM

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-59@7-@@

S
pine inform

ation:

IB
M

z/O
S D

C
E

A
pplication D

evelopm
ent G

uide: Introduction and Style

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	DCE Application Development Environment
	Unsupported OSF DCE Functions
	OSF DCE Programming Interfaces

	How This Book Is Organized
	Terminology Used in This Book
	Conventions Used in This Book
	Where to Find More Information
	Softcopy Publications
	Internet Sources
	Using LookAt to Look up Message Explanations
	Accessing Licensed Books on the Web

	Chapter 1. Introduction to DCE Application Programming
	About DCE Programming Style
	Mechanism, Policy, and Style
	Policy and Style Issues
	General Policies

	Application Development Overview
	Overview of DCE Application Development Steps
	Application Development Tools
	DCE UUID Generator
	DCE Interface Definition Language
	DCE IDL Compiler
	Attribute Configuration File
	DCE Host Daemon
	DCE Control Program
	DCE API

	The Interface Definition
	Generate the Interface UUID
	Write the Interface Definition File
	Write the Attribute Configuration File (ACF)
	Process the Files with the IDL Compiler

	The Server Initialization
	Set Up the Server's Objects
	Object UUIDs in Bindings
	Make Object-UUID/Type-UUID Associations
	Summary of the Mechanisms that Rely on Object UUIDs

	Set Up Security
	Define Manager Entry Point Vectors for Each Set of Operations
	Register the Server
	Register the Interface, Type UUID, and EPV with RPC Runtime
	Tell RPC Runtime What Protocol Sequences to Use
	Register the Binding Information with the Endpoint Mapper Service
	Export the Binding Information to the Namespace (CDS)

	Specify Multithreadedness
	Listen for Incoming Service Requests
	Clean Up Code When the Server Terminates
	Unregister The Server
	Unexport from the Namespace
	Clean Up Security Information

	The Client Binding and RPC Invocation
	Import the Binding Information from the Namespace
	Getting a Handle
	Entry Name
	Binding Compatibility

	Annotate the Binding Handle for Security
	Preparation
	Setting Up for Authenticated RPC

	Invoke Remote Procedure Calls
	The Possibility of Binding Failure
	The Result of Successful Binding

	The Server's Manager of RPC Requests
	Get the Client's Credentials
	Get RACF Authorization using RACF-DCE Interoperability
	Get the Object's Access Control List (ACL)
	Make the Authorization Decision
	Service the RPC Request
	Return the Results and Resume Listening
	Continue

	Writing a Simple Distributed Application on z/OS
	High-Level Application Development Steps
	Step 1. Creating Files for Your Application
	In the Shell
	In TSO/E and Batch

	Step 2. Generating a UUID and IDL File
	In the Shell
	In TSO/E
	In Batch

	Step 3. Naming the Interface for Your Application.
	Step 4. Defining the Interface Operations
	Step 5. Compiling the Interface with the IDL Compiler
	In the Shell
	In TSO/E
	In Batch

	Step 6. Writing Your Server and Manager Code
	Step 7. Writing the Client Code for Your Application
	Step 8. Compiling the Client and Server Programs
	In the Shell
	In TSO/E
	In Batch

	Step 9. Link-Editing Your Application
	In the Shell
	In TSO/E
	In Batch

	Step 10. Building Your DCE Application
	In the Shell
	In Batch

	Running Your DCE Application
	Step 1. Starting Your Server
	In the Shell
	In TSO/E
	In Batch

	Step 2. Starting Your Client
	In the Shell
	In TSO/E
	In Batch

	Step 3. Checking Your Application
	In The Shell
	In TSO/E and Batch

	Step 4. Stopping Your Application
	Normal Stopping
	Abnormal Stopping

	Step 5. Setting Environment Variables
	In the Shell
	In TSO/E
	In Batch

	Language Environment Runtime Options Considerations
	For Application Storage
	For Application Debugging
	Other Runtime Options

	Note on Interlanguage Calls

	Creating a Sample Application: GREET
	Fast Path to Running Greet
	1. Creating Files for the Greet Application
	In the Shell
	In ISPF:

	2. Generating a UUID and an IDL File
	In the Shell
	In TSO/E
	In Batch

	3. Naming the Greet Interface
	4. Defining the Interface Operations
	5. Compiling the Greet Interface with the IDL Compiler
	In the Shell
	In TSO/E
	In Batch

	6. Writing the Greet Server and Manager Code
	7. Writing the Greet Client Code
	8. Building the Greet Client and Server Programs
	In the Shell
	In Batch

	9. Starting the Greet Server
	In the Shell
	In Batch

	10. Starting the Greet Client
	In the Shell
	In Batch

	Chapter 2. Extending the Greet Application
	Logging Into DCE
	Changing Your Login Context
	In the Shell
	In TSO/E
	In Batch

	Inheriting Contexts for Multiple Programs

	Searching for Your Server
	Using the DCE Host Daemon
	Modifying the Greet Server Code
	Note on Registering Servers
	Balancing Server Workload
	Modifying the Greet Client Start up

	Using the Name Service Interface
	Exporting the Greet Server Binding to the Namespace

	Importing the Greet2 Server Binding from the Namespace
	Starting the Greet2 Server and Client
	Starting the Greet2 Server for CDS

	Monitoring Your Distributed Application

	Using Automatic Binding Handles
	Modifying the Greet Code

	Adding Multiple Object Types
	Modifying the Greet IDL File
	Modifying the Greet4 Manager
	Modifying the Greet4 Server
	Modifying the Greet4 Client
	Starting the Greet4 Server and Client

	Chapter 3. Securing the Greet Application
	Greet with Name-Based Authorization
	Finding the Source Code for this Example
	Greet Server (Main)
	Greet Server (Manager)
	Greet Client
	Creating a Key Table File for the Greet5 Server
	Starting the Greet5 Application
	Greet5 Server Output
	Greet5 Client Output

	Greet with EPAC-based Authorization
	Finding the Source Code for this Example
	Changing Name-Based Authorization to EPAC-Based

	Building the Greet6 Example
	In the Shell
	In Batch

	Starting the Greet6 Server
	Updating the ACL Database File
	Starting the Greet6 Client

	Chapter 4. Threads
	Thread Use Policy
	To Thread or Not to Thread
	How Many Threads?
	Scheduling Policies

	Thread Safety
	Thread Rules

	Threads Programming Topics
	Thread Handles
	Storage for Thread Specific Data
	Canceling Threads
	Cancelability State
	Cancelation Points
	Cancelation Side Effects
	Thread Cleanup
	Asynchronous Cancel Safety
	Cancel Rules Summary

	Signals
	Signal Masking
	Synchronous Signal Handling
	Asynchronous Signal Handling
	Signal Rules

	Forking in a Threaded Application

	RPC Threads
	RPC Cancel Semantics

	Chapter 5. Security
	The Basic Security Model
	Application Roles
	Authentication Model
	The DCE Authentication Model
	Application-Level Authentication
	Obtaining an Authentication Identity
	The Authenticated RPC Call
	Managing Keys
	Default Server Authentication Steps
	managekey
	server_get_identity
	server_renew_identity

	Default Client Authentication Steps
	is_valid_principal

	Authorization
	Authorization using RACF-DCE Interoperability
	Using Cross Linking Information
	Using z/OS DCE and RACF Services
	Other Uses for the Cross Linking Information

	Client Credentials
	Access Control Lists
	Permissions Semantics Recommendations

	ACL Managers
	Who Does What?
	The Requirements
	What Is an Object?
	Why Three Databases?
	Object Name Resolution Routine
	What Is an ACL Manager?
	Why Two ACL Managers?
	How the ACL Library Routines Extract and Evaluate ACLs
	Backing Store Database Items and Headers
	Object-Indexed Store
	Name-Indexed Store
	ACL UUID-Indexed Store
	ACL Manager Coding Example
	Data Definitions
	server_get_local_principal_id
	server_create_acl
	server_store_acl
	server_acl_mgr_setup
	server_acl_mgr_close
	server_rdacl_export
	server_rdacl_cleanup
	sample_mgmt_auth
	sample_resolve_by_name

	Chapter 6. Binding
	The Binding Model
	Server Binding Model
	Client Binding Model
	Call Routing
	Routing Policy
	Object UUIDs as Endpoint Identifiers

	Binding Handles
	Binding Methods
	Authentication and Binding Methods

	Chapter 7. Using the DCE Name Service
	Introduction to Using NSI
	The UUID
	Object UUIDs
	Interface UUIDs
	Summary: Names and UUIDs

	Binding to an Object
	Junctions
	A Junction Example
	Junctions and the ACL Editor

	Name Service Terminology
	CDS Entries
	CDS Entry Attributes

	Binding
	Importing and Exporting Bindings
	Summary

	Partial Binding and the Endpoint Mapper
	Interface Ambiguity and Partial Bindings
	Using Object UUIDs to Avoid Binding Ambiguity
	An Object-Oriented Namespace
	Setting Up an Object-Oriented Namespace
	Groups and Profiles
	Group Entries
	Profiles
	Summary of Namespace Entry Types

	Three Models for Accessing Binding Information
	Access by Services
	Access By Servers
	Access By Objects
	Summary of Binding Models

	Models Based on Non-CDS Databases
	Example of a Privately Managed Database
	Combining Models

	An Object-Oriented Model with Grouped Binding Information
	Server and Client Steps
	Server Export
	Client Import

	Global Organization of the Namespace

	Chapter 8. RPC Parameters
	Execution Semantics
	Parameter Semantics
	Parameter Memory Management
	Client Side Allocation
	Server Side Allocation

	RPC Data Types
	IDL to C Type Mappings
	Character Data Handling
	Pointers
	Memory Allocation Routines
	Pointer Types
	Pointer Examples

	Context Handles
	Arrays
	Structures and Unions
	Pipes
	The transmit_as Attribute

	Chapter 9. Server Management
	Application Support for Server Management
	Manager Initialization

	Appendix A. A Sample Application
	Getting Started
	The Generic Server
	Manager and Client
	Object Bind Interface

	Appendix B. Another Sample DCE Application: TIMOP
	Developing a DCE Application
	What Do Stub Files Do?

	TIMOP — A Complete Sample Application
	What TIMOP Does
	TIMOP server
	TIMOP client

	TIMOP and Security
	Source Files
	Building TIMOP
	In the Shell
	In Batch

	Installing TIMOP
	Running TIMOP
	In the Shell
	In Batch

	Stopping TIMOP
	Further Exercises
	The TIMOP Program: A Sample DCE Application
	The TIMOP IDL Source File
	The TIMOP ACF Source File
	The TIMOP Auxiliary Header File
	The TIMOP Client Header File
	The TIMOP Client Source File
	The TIMOP Server Header File
	The TIMOP Server Source File
	The TIMOP Manager Source File
	The TIMOP Reference Monitor Source File

	Appendix C. Greet6 ACL Manager Example
	Greet6 Server Code
	Greet6 Manager Code
	Greet6 secacl Code
	Greet6 rdacl Code
	Greet6 Client Code

	Appendix D. Notices
	Trademarks
	Programming Interface Information

	Glossary
	Bibliography
	z/OS DCE Publications
	Overview
	Planning
	Administration
	Application Development
	Reference

	z/OS SecureWay® Security Server Publications
	Tool Control Language Publication
	IBM C/C++ Language Publication
	z/OS DCE Application Support Publications
	Encina Publications

	Index

